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1 Introduction 13

Delegated asset managers compete to attract flows of investor capital.1 This flow-motivation 14

can create incentive problems between asset managers and investors. However, contracting 15

can mitigate such incentive problems, for example by making contracts depend on verifi- 16

able public information such as credit ratings (He and Xiong (2013) and Parlour and Rajan 17

(2016)) or benchmark indices (Buffa, Vayanos, and Woolley (2015), Holmstrom (1982), and 18

van Binsbergen, Brandt, and Koijen (2008)). But these contracts themselves are written by 19

asset managers who are competing to attract flows. Does asset managers’ flow-motivation 20

distort the contracts they offer? 21

In this paper, we present a model that suggests that the answer to this question is yes. 22

We find that asset managers make their contracts depend on public information as a way to 23

compete for flows, rather than as a way to mitigate incentive problems. Indeed, in our model, 24

asset managers do away with incentive problems by contracting on final wealth alone. But 25

they still contract on public information, because it allows them to offer lower fees to attract 26

investors’ capital flows, while still breaking even. Unfortunately, asset managers’ competition 27

for flows triggers a race to the bottom: asset managers use public information in their 28

contracts even though it is socially inefficient. This inefficiency arises because contracting 29

on public information prevents risk sharing. 30

Model preview. To understand how the incentive to attract flows affects asset manage- 31

ment contracts, we model asset managers that offer contracts to compete for the capital of a 32

single investor. The investor wants to delegate his investment to an asset manager because 33

asset managers have better information about asset returns than he does. However, delega- 34

tion comes with an incentive problem, because the asset managers have different degrees of 35

risk aversion from the investor. We make no assumption as to whether asset managers or 36

the investor is more risk averse; we assume only that they have utility functions in the same 37

1Papers that show the importance of delegated asset managers’ competition for flows in-
clude Berk and Green (2004), Brown, Harlow, and Starks (1996), Chevalier and Ellison (1997, 1999),
Dasgupta and Piacentino (2015), and Dasgupta and Prat (2006, 2008).

1



HARA class.2 38

In the model, asset managers design contracts taking into account potential incentive 39

problems. Thus, we allow their contracts to depend not only on the final wealth and the 40

asset manager’s action, i.e. the “portfolio allocation,” but also on a public signal. In the 41

baseline model, we assume that the public signal is released before the investor delegates 42

his investment to an asset manager, which we argue applies well to contracting on credit 43

ratings.3 But we also analyze the case in which the public information is realized later, 44

which we argue applies well to contracting on benchmark indices (Section 5).4 Once the asset 45

manager has been chosen, he gets his private information and makes an investment decision, 46

i.e. he allocates the investor’s capital to a portfolio of assets.5 Finally, the investment pays 47

off and the final wealth is divided according to the asset manager’s contract. 48

Results preview. We begin our analysis by studying the constrained-efficient outcome, 49

i.e. the delegation contract and investment decision that maximize social welfare subject to 50

the constraint that the asset manager’s portfolio choice is incentive compatible. We show 51

that the first-best outcome can be implemented by an affine contract, i.e. a fixed fee and a 52

constant proportion of final wealth. This follows from an application of a general result due 53

to Wilson (1984): as long as utility functions are in the same HARA class, an affine contract 54

both implements efficient risk sharing and aligns incentives.6 This benchmark implies that 55

2See Subsection 2.1 for the precise definition of a class of HARA (“hyperbolic absolute risk-aversion”)
utility functions. This includes a relatively wide class of preferences; e.g., if everyone has CARA utility then
our results apply for all risk-aversion parameters.

3Asset management contracts frequently depend on credit ratings in practice. For example, according
to the Bank for International Settlements (2003), “it is common, for example, for fixed income investment
mandates to restrict the manager’s investment choices to investment grade credits”; that is to say that they
restrict their portfolios to securities rated BBB – or higher by Standard & Poor’s or Baa3 or higher by
Moody’s. E.g., in its European Corporate Bond Fund prospectus, Threadneedle Investments says, “The
portfolio will not be more than 25% invested in securities rated AAA.... A maximum of 10% of the portfolio
can be invested in below investment grade securities.” Ashcraft and Schuermann (2008) affirm the impor-
tance of contracting on ratings, saying that “As investment mandates typically involve credit ratings, they
comprise another point where the CRAs play an important role.”

4Asset management contracts also frequently depend on benchmarks in practice; see Ma, Tang, and
Gómez (2016).

5Actually, we set up a general model that includes delegated portfolio choice as a special case. Since we
are motivated by delegated portfolio management contracts, we restrict attention to this application in the
Introduction for illustrative purposes.

6To be specific, the main theorem in Wilson (1984) is that “If the sharing rule is efficient and linear
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the classic trade-off between incentives and risk sharing is fully resolved by contracting 56

on final wealth alone, so contracting on the public signal is not necessary to mitigate the 57

incentive conflict between an asset manager and the investor.7 Thus, our analysis reflects 58

the effect of contracting on public information beyond that of aligning incentives, which has 59

been studied elsewhere (see the literature review below). 60

We then solve for the equilibrium of our model. Our first main result is that asset 61

managers do make their contracts contingent on the public signal, even though it does 62

not mitigate the incentive problem. This is because contracting on the signal allows asset 63

managers to compete to attract flows, i.e. to be employed to manage the investor’s capital. It 64

allows them to offer the investor lower fees for “good” signals, undercutting the competition 65

while still breaking even themselves. To see how this works, suppose there is an equilibrium 66

in which all asset managers offer contracts that do not depend on the public signal. Because 67

they are competitive, asset managers must break even in expectation across all realizations of 68

the public signal. Since their contracts do not depend on the signal, they take losses for “bad” 69

signals and make offsetting profits for “good” signals. Given these strictly positive profits 70

for these good signals, there is room to offer a lower fee conditional on a good signal, i.e. 71

to deviate to a contingent contract and undercut the competition. Extending this argument 72

implies that asset managers must break even not only in expectation, but also for every 73

realization of the public signal. They achieve this by writing the public signal into their 74

contracts. Thus, our model suggests that flow competition, rather than incentive problems, 75

may be the reason that asset management contracts frequently depend on public information 76

such credit ratings and benchmark indices. 77

[or affine] then truthful revelation is a Nash equilibrium.” The efficient sharing rule is affine if and only
if everyone has preferences in the same HARA class. We thus apply this result to an optimal contracting
setting. It is also worth noting that Ross (1974) finds related results for the principal-agent problem, which
are sometimes grouped under the heading of “The Principle of Similarity.” Related results are also in
Amershi and Stoeckenius (1983), Pratt and Zeckhauser (1989), and Wilson (1968).

7Note that this contrasts with the common intuition about principal-agent problems that the agent (the
asset manager here) must bear an inefficiently high fraction of the risk in order to give him a strong incentive
to act in the interest of the principal (the investor here). To understand why this trade-off is absent if and
only if utility functions are in the same HARA class see Subsection 3.2 below and Pratt (2000).
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Our second main result is that competition among asset managers has a dark side: it 78

prevents risk sharing and thus lowers welfare. Since asset managers contract on the public 79

signal to compete, they must break even for each realization of the signal in equilibrium. 80

In other words, they get the same payoff (of zero) no matter what the realization is. Thus, 81

all of the risk in the public signal is borne by the investor—there is no risk sharing between 82

him and his asset manager. This result is related to Hirshleifer’s (1971) result that if public 83

information is revealed before markets open, it inhibits risk sharing. We find that if public 84

information is contractable before asset managers are employed, it inhibits risk sharing. 85

Thus, unlike in Hirshleifer (1971), the presence of any contractable public signal inhibits risk 86

sharing even if it contains no new information. Since contracting on the public signal is not 87

necessary to align incentives in our model, prohibiting contracting on it is Pareto improving. 88

Policy. Even though our model is stylized, we think that it provides a relevant perspec- 89

tive for policy. In the context of the model, regulators can increase welfare by limiting the 90

extent to which asset managers can contract on credit ratings, a leading example of public 91

signals used in delegated asset management contracts. This policy is in line with advice 92

from the Financial Stability Board, which said that “Investment managers and institutional 93

investors must not mechanistically rely on CRA ratings...[and should limit] the proportion of 94

a portfolio that is CRA ratings-reliant.” This quote reflects the fact that regulators have al- 95

ready identified some potential risks of the mechanistic reliance on ratings, such as increased 96

systemic risk; our analysis reveals another one: the mechanistic reliance on ratings may 97

inhibit risk sharing. Thus, limiting contractual dependence on ratings may have the added 98

benefit of preventing the race to the bottom which inhibits financial markets from perform- 99

ing one of their main functions: allowing investors to share risk. A regulator may implement 100

this policy directly, by prohibiting asset managers from contracting on ratings, or indirectly, 101

by encouraging ratings agencies to publicize information in a “soft” way that is difficult to 102

contract on, e.g., they could release verbal reports rather than announce letter-based ratings. 103

Our finding that a regulator can improve risk sharing without changing the precision of 104
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ratings highlights the difference between our results and those in Hirshleifer (1971). In his 105

setting, a regulator must decrease the precision of ratings to improve risk sharing; in our 106

setting, in contrast, a regulator can limit contracting on ratings to improve risk sharing. 107

However, if contracting on ratings is possible, then increasing their precision may have neg- 108

ative effects in our model, in line with Hirshleifer’s findings. In particular, we show that 109

under the assumption that asset managers do not get new information from ratings, coarser 110

ratings Pareto dominate more precise ones. This is because a more precise public signal al- 111

lows asset managers to compete more aggressively—i.e. asset managers break even for more 112

realizations of the signal—which makes risk sharing more difficult.8 113

Layout. In the remainder of the Introduction, we discuss our model’s empirical relevance 114

and the related literature. In Section 2, we present the baseline model. In Section 3, we 115

present the first-best and constrained efficient benchmarks. In Section 4, we solve the baseline 116

model and analyze welfare. In Section 5, we study a modified version of the baseline model 117

that applies to portfolio benchmarking. In Section 6, we analyze extensions. Section 7 is the 118

Conclusion. The Appendix contains all proofs and a table of notations. 119

1.1 Applications, Realism, Magnitudes, and Limitations 120

Applications. In addition to our motivating examples of asset managers contracting on 121

credit ratingsand benchmark indices, our analysis applies broadly to settings in which agents 122

post contracts to compete for flows. Notably, life insurers, who hold upwards of fifteen per- 123

cent of outstanding corporate and foreign bonds in the US, are another type of asset manager 124

that makes contracts contingent on public information. The bulk of insurers’ liabilities are 125

annuities, many of which give investors the option to take “cash surrender value” before 126

8Of course, there are other reasons that regulators may wish to pursue policies to make ratings more
precise. Indeed, in our setting, if asset managers do get new information from ratings, then increasing
ratings’ precision has the benefit of improved investment efficiency. However, our findings show that, if
ratings are contractable, then this benefit comes with the cost of worse risk sharing. Thus, we suggest that
if regulators work to increase ratings’ precision, it is all the more important that they also work to minimize
the negative effects of increased ratings’ precision on risk sharing, ideally by limiting contractual dependence
on ratings.
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maturity (i.e. before the death of the policy holder).9 This exposes investors to market risk, 127

since they get the market value of the annuity, rather than a fixed amount. Our model 128

suggests a reason for this: if an insurer offered a fixed surrender value, a competing insurer 129

could offer a cheaper product in good times, attracting flows away from the initial insurer.10 130

Thus, insurers’ competition for flows prevents them from sharing market risk with their 131

investors—it prevents insurers from providing insurance. 132

Realism of assumptions. Our first main result, that contracts depend on public 133

signals, follows from our assumption that asset managers offer contracts to compete for 134

flows. Wahal and Wang (2011) find evidence consistent with this assumption. They study 135

the contracts offered by new entrant mutual funds, who, almost by definition, are competing 136

to attract new investors. They find that “on the basis of prices over which fund managers 137

have direct control (management fees), price competition is strong” (p. 42). 138

In the baseline model, this result also depends the timing, in which asset managers first 139

post contracts, then the public signal is released, and then the investor chooses an asset 140

manager (although we consider an alternative timing in Section 5 on portfolio benchmarks). 141

This timing captures the idea that asset managers must post contracts in anticipation of 142

changes in public information rather than post new contracts in response to any new infor- 143

mation. Since public information is released continuously, posting new contracts in response 144

to it would quickly become very costly (e.g. due to legal fees for contracting).11 In real- 145

ity, asset managers avoid these costs by contracting on public information and updating 146

their contracts relatively rarely; according to Warner and Wu (2011), “the semi-annual con- 147

tract change frequency is approximately 5% [for mutual funds], with contract changes often 148

9See Berends, McMenamin, Plestis, and Rosen (2013).
10In practice, some annuities’ surrender values are indeed fixed. However, they typically have penalties for

early withdrawal. This effectively adds a cost of switching away from an incumbent asset manager, curbing
competition; we formalize this in Subsection 6.2.

11These dynamics, in which asset managers change their contracts in response to changes in public infor-
mation, could be captured by reversing the timing in our model, so asset managers would post contracts
after the public signal was released. With this timing, asset management contracts would still depend on the
signal, in that asset managers would post different contracts for its different realizations. But asset managers
would not need to write the public signal into their contracts explicitly, since each contract would already
correspond to a particular realization of the signal.
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shifting the percentage fee up or down by more than a fourth” (p. 273). 149

Given our first main result, our second main result, that contracting on ratings can 150

decrease risk sharing, follows from only the assumption that people are risk averse. 151

Magnitude. Although our baseline setup is abstract, we consider a portfolio choice 152

application that allows us to map most of the variables in our model to concrete real-world 153

quantities such as the risk-free rate and the expected return and variance on the market 154

(Subsection 6.2). This allows us to do a numerical example with “reasonable” numbers in 155

which we find that an investor would sacrifice 27 basis points of his total wealth to ban 156

contracting on ratings. 157

Discussion of results and limitations. Within the context of the numerical example 158

in Subsection 6.2, we also discuss adding a cost of switching away from an “incumbent” asset 159

manager. This allows us to address an unrealistic feature of our equilibrium contracts: they 160

depend on all realizations of the public signal, rather than on a coarse partition of them. 161

For example, if the public signal is a credit rating, the equilibrium contract in our model 162

depends on the exact rating, AAA, AA+, AA, etc., rather than just on whether the rating 163

is investment grade or not, as is typical in practice. Our numerical exercise suggests that 164

switching costs are unlikely to be large enough to lead an incumbent asset manager to offer 165

a contract that does not depend on the public signal at all, as in the constrained-efficient 166

contract, but may lead him to leave out some contingencies, as in real-world contracts. 167

Our contracting environment includes non-linear contracts that depend on the final 168

wealth, on the asset manager’s portfolio decisions, and on public information. Despite the 169

generality of our setup, we find that the equilibrium contract has a simple and realistic form. 170

It is affine, as are many real-world asset management contracts,12 and it depends on the 171

public signal. Specifically, asset management fees are lower when the public signal indicates 172

a high aggregate state. This is realistic if the signal represents a benchmark index: asset 173

managers are often paid for performance in excess of a benchmark. However, this seems 174

12See Agarwal, Daniel, and Naik (2009) and Elton, Gruber, and Blake (2003).
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less realistic if the signal represents a credit rating: although asset managers are often con- 175

strained by ratings-based investment mandates (see footnote 3), their fees do not seem to 176

depend on ratings. However, we suggest that asset managers’ fees actually do depend on rat- 177

ings, given the following interpretation. There is a lot of heterogeneity in fund fees (Haslem 178

(2015), Hortaçsu and Syverson (2004)). For example, fund families typically offer different 179

fees for an investment-grade fund than for a sub-investment-grade fund. Although these are 180

formally different fees for different funds, they are equivalent to different fees for different 181

ratings in our model. If the rating is high, the investor invests in the investment-grade fund 182

and pay its fee; if the rating is low, he invests in the sub-investment-grade fund and pay its 183

fee. 184

We have assumed that all asset managers have the same skills and that they are com- 185

petitive, so the investor gets the rent. However, some evidence suggests that asset managers 186

have heterogeneous skills and leave little rent to investors (see, e.g, Berk and van Binsbergen 187

(2015) and Carhart (1997)). In Subsection 6.1, we discuss how to embed our model in a 188

directed search environment. We show how this framework would allow us to include dif- 189

ferent kinds of asset managers and competition among investors. Although this exercise is 190

somewhat preliminary, it suggests that our results are robust to relaxing these assumptions. 191

1.2 Related Literature 192

We make two main contributions to the literature. 193

First, we show that competition for flows may lead asset managers to contract on public 194

information even if it is inefficient to do so. In the context of benchmarks, this suggests a 195

resolution to the puzzle in Admati and Pfleiderer (1997), who find that benchmarks “cannot 196

be easily rationalized...[and] are generally inconsistent with optimal risk sharing and do not 197

lead to the choice of an optimal portfolio” (p. 323). In the context of credit ratings, this 198

provides an alternative view to He and Xiong (2013) and Parlour and Rajan (2016) who also 199

take the “contracting view” of ratings, but do not study flow competition. 200
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Second, we show that the ability to contract on public information may have adverse 201

effects. This perspective contrasts with the contracting literature on public information 202

in principal agent problems,13 in which, absent flow competition, contracts refer to public 203

information only when it is beneficial. However, it is in line with the findings in some other 204

strands of the literature. Notably, in Kurlat and Veldkamp (2015) public information leads 205

equilibrium prices to adjust, so it is too late for people to trade to share risk. And in Glosten 206

(1989) private information leads to high bid ask spreads, so it is too costly for people to trade 207

to share risk. Our contribution relative to these papers is to show that such inefficiencies 208

arise even when agents write optimal contracts before information is released. 209

More generally, our work is related to theory papers on contracting in delegated as- 210

set management14 and on information production by credit rating agencies.15 Unlike these 211

papers, we focus on flow competition in asset management and abstract entirely from in- 212

formation production by credit rating agencies (the “rating” in our model is just a public 213

signal). 214

2 Baseline Model 215

In this section, we set up the baseline model. The model constitutes an extensive game of 216

incomplete information in which asset managers first compete in contracts in the hope of 217

being employed by a single investor and then the employed asset manager takes an action 218

on behalf of the investor. Final wealth is divided according to the contract of the employed 219

asset manager. 220

13See, e.g., Chaigneau, Edmans, and Gottlieb (2014a, 2014b), Cremer and McLean (1988),
Holmstrom (1979), Kessler, Lülfesmann, and Schmitz (2005), Nalebuff and Scharfstein (1987), and
Riordan and Sappington (1988).

14See, e.g., Bhattacharya and Pfleiderer (1985), Dybvig, Farnsworth, and Carpenter (2010),
Palomino and Prat (2003), and Stoughton (1993).

15See, e.g., Bolton, Freixas, and Shapiro (2012), Bar-Isaac and Shapiro (2013), Boot, Milbourn, and
Schmeits (2006), Donaldson and Piacentino (2012), Fulghieri, Strobl, and Xia (2013), Goel and Thakor
(2015), Goldstein and Huang (2016), Kashyap and Kovrijnykh (2016), Doherty, Kartasheva, and Phillips
(2012), Kartasheva and Yilmaz (2013), Kovbasyuk (2013), Manso (2014), Mathis, McAndrews, and Rochet
(2009), Opp, Opp, and Harris (2013), Sangiorgi and Spatt (2016), and Skreta and Veldkamp (2009).
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The motivating portfolio-choice application from the Introduction is a special case of our 221

general model. We describe this special case explicitly in parallel to the general setup. This 222

makes the model concrete and fixes ideas. It also allows us to provide closed-form solutions 223

for the asset manager’s action. 224

2.1 Players 225

There is a single investor with a unit of wealth and von Neumann–Morgenstern utility uI and 226

there are at least two competitive asset managers with von Neumann–Morgenstern utility uA 227

and outside option ū. All asset managers are identical. The investor and the asset managers 228

differ in their risk aversion. We make no assumption as to whether the investor or the asset 229

manager is more risk averse but we assume that both utility functions are in the same class 230

of hyperbolic absolute risk-aversion (HARA). Specifically, their absolute risk tolerances are 231

affine with the same slope, 232

−u′

i(w)

u′′

i (w)
= ai + bw (1)

for ai > −bw for all w and for i ∈ {I,A}.16 Note that this assumption imposes no restriction 233

on the magnitude of the difference between the investor’s and asset manager’s risk aversions. 234

The HARA class is a relatively large class of utility functions. For example, it contains all 235

utility functions in the CARA class (exponential utility), which is commonly used in the 236

literature—if b = 0 condition (1) implies that the investor and the asset managers have 237

CARA utility with coefficients of absolute risk aversion a−1

I
and a−1

A
. Further, if b = −1 238

condition (1) implies that utility functions are quadratic, 239

ui(w) = −1

2

(

ai − w
)2
. (2)

16This ensures that the coefficients of absolute risk tolerance in condition (1) are always strictly positive
or, equivalently, that the utility functions are always strictly increasing and strictly concave.
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In the application to portfolio choice that we explore below, we illustrate our results with 240

quadratic utility, because it allows us to solve for the optimal contract and investment 241

decisions in closed form. 242

Asset managers have private information, captured by a private signal σ, which is relevant 243

for the investment decision. There is also a public signal ρ that the investor can observe as 244

well. An asset manager’s signal σ and the public signal ρ refer to the realizations of random 245

variables σ̃ and ρ̃. We assume that asset managers’ signal is better than the public signal, in 246

the sense that the sigma-algebra generated by σ̃ is finer than the sigma-algebra generated by 247

ρ̃, sigma (ρ̃) ⊂ sigma (σ̃). In other words, asset managers do not learn from the public signal. 248

We make this assumption to switch off the public signal’s role in information-provision and 249

focus on its role in contracting. However, this assumption is not strictly necessary for most 250

of our results or policy prescriptions.17 We do not impose any other restrictions on the 251

distributions of σ̃ and ρ̃. 252

2.2 Actions and Contracts 253

The investor wishes to delegate his investment to an asset manager because the asset man- 254

ager is better informed about the optimal action to undertake. The asset manager will take 255

an action x that affects the distribution of wealth that the investor and asset manager will 256

divide ex post. Thus, for each action x that the asset manager takes, final wealth is a ran- 257

dom variable which we denote by w̃(x). We assume that w̃ is a concave function of x for 258

every state of the world.18 The asset manager’s signal provides him with information about 259

the distribution of this random variable, making delegation valuable. However, the investor 260

17We use this assumption only in the proof of Proposition 5, which says that coarser information structures
Pareto dominate finer ones. If we assumed that asset managers learned from the public signal, the forces
behind this result would not be affected, but the result would be attenuated due to a countervailing force:
finer public information might provide asset managers with information that would lead them to make better
investment decisions. However, this force would not affect our policy prescription that ratings-contingent
asset management contracts should be limited. This is because asset managers could still use the information
in ratings to guide their decisions without contracting on it.

18This technical assumption allows us to solve the general model using the first-order approach. Note
that it is not strictly necessary for our main results. In particular, our results hold in the portfolio choice
application in which this assumption does not hold (w̃ is an affine function of x).

11



anticipates a misalignment of investment incentives since his risk aversion differs from the 261

asset manager’s. Contracts attempt to align incentives to mitigate this downside of dele- 262

gating investment. Each asset manager offers a contract Φ that specifies his compensation. 263

This contract may depend on the final wealth w, the public signal ρ, and his action x, but 264

not the private signal σ because it is not verifiable. In other words, the asset manager gets 265

Φ(w, x, ρ) and the investor gets w − Φ(w, x, ρ). 266

Portfolio choice application. Our model is motivated by delegated asset management, 267

in which case x represents an asset manager’s portfolio choice decision. To fix ideas, consider 268

the problem of allocating the initial unit of wealth between two assets, a risk-free asset with 269

return Rf and a risky asset with return R̃. The final wealth is thus given by 270

w̃(x) = Rf + x
(

R̃ −Rf

)

. (3)

In this case, we view asset managers’ private information σ as the true standard deviation 271

of R̃ and ρ as an imperfect public signal about σ. 272

Below, we use this portfolio choice application with quadratic utility (as in equation

(2)) to provide an illustration of our general results. We make the following assumption to

streamline this illustration: the mean return of the risky asset is known and is independent

of the asset manager’s private information σ and the rating ρ. This implies that

E

[

R̃
∣

∣ σ̃ = σ
]

= E

[

R̃
∣

∣ ρ̃ = ρ
]

= E
[

R̃
]

=: R̄.

With quadratic utility functions, we must restrict parameters to ensure that marginal 273

utility is positive—i.e. that everyone always prefers more wealth to less. The following 274

technical condition ensures this is the case in equilibrium: 275

(

R̄−Rf

)(

R − R̄
)

≤ σ2 (4)
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for all pairs (σ,R). 19
276

2.3 Timing 277

Formally, the timing is as follows: 278

1. Each asset manager offers a contract Φ. 279

2. The public signal ρ is released. 280

3. The investor observes ρ and the profile of contracts and employs an asset manager. 281

4. The employed asset manager observes his private signal σ and takes an action x. 282

5. The final wealth is realized and it is distributed according to the contract Φ of the 283

employed asset manager: the asset manager gets Φ(w, x, ρ) and the investor gets w − 284

Φ(w, x, ρ). 285

Remark on timing. It is important for our results that the investor can condition 286

his decision about which asset manager to employ on the asset managers’ contracts and on 287

the public signal. This allows asset managers to contract on the public signal as a way to 288

compete for flows. We model this by assuming that (i) the investor observes the public 289

signal after asset managers offer contracts and (ii) the investor observes the public signal 290

before he chooses which asset manager to employ. These assumptions may seem stark, but 291

we think that they have realistic interpretations: (i) captures the idea that investors are free 292

to switch asset managers after observing the public signal and (ii) captures the idea that 293

public information may change, leading investors to reallocate their capital. In other words, 294

the assumptions that investors employ asset managers only once and that the public signal 295

is released only once are not crucial to the mechanism. 296

19To ensure that marginal utility is positive, it must be that the investor’s welath is always less than aI

and the asset managers’ wealth is always less than aA, as can be seen from the quadratic functional form.
Given the equilibrium contract Φ, this implies that w−Φ(w) < aI and Φ(w) < aA for all possible realizations
of w. Condition (4) ensures that these conditions are satisfied given the equilibrium contract Φ. Specifically,
we solve the model assuming the conditions are satisfied and then find that they are satisfied as long as this
condition (4) holds.
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2.4 A Note on Notations 297

At times the contracting notation can be cumbersome, so we frequently suppress the argu- 298

ments of some functions. In particular, the contract Φ = Φ(w, x, ρ) is always a function of 299

wealth w, the asset manager’s action x, and the public signal ρ, but we frequently write just 300

Φ or Φ(w). Φ′ denotes the partial derivative of Φ with respect to w, Φ′ := ∂Φ/∂w. The 301

asset manager chooses the action given his signal σ, but we usually write just x for x(σ). 302

A table summarizing our notations is in Appendix B. 303

3 Benchmarks: First Best and Constrained Efficiency 304

In this section, we solve for the first-best and constrained-efficient outcomes of the model. 305

The main result of this section is that these outcomes coincide, i.e. the asset manager’s 306

incentive constraints alone do not move the outcome away from first-best. This result is 307

useful to solve the model below. 308

3.1 First Best 309

We define the first-best outcome as the contract Φ and action x that maximize a weighted 310

sum of utilities20 of the investor and a representative asset manager (since all asset managers 311

are identical, the utility of this “representative asset manager” can also represent the utilities 312

of all asset managers). We normalize the welfare weight on the investor to one and denote 313

the welfare weight on the asset manager by λ so the social welfare function is uI+λuA. Thus, 314

we define the first-best outcome as the solution of the program to 315

maximize E

[

uI

(

w̃(x)− Φ
)

+ λuA

(

Φ
)

]

(5)

20We define any outcome on the Pareto frontier as first best for a given welfare weight. In contrast, it
is common in the contract-theory literature to define the first-best outcome as the one that maximizes the
payoff of the principal (the investor) subject to the participation constraint of the agent (the asset manager);
see, e.g., Bolton and Dewatripont (2005). This is a special case of our definition (choose the welfare weight
λ so that the asset manager’s expected utility equals his reservation utility ū). We use the more general
definition because the results we get here are useful below (cf. Proposition 5).
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over all contracts Φ = Φ(w, x, ρ) and all actions x = x(σ). Note that, since x depends on σ 316

and σ is a sufficient statistic for ρ, information frictions do not constrain this program. The 317

next proposition characterizes the solution of the program. 318

Proposition 1. (First best.) The first-best contract Φfb is affine and given by 319

Φfb =































aI − λ−baA + bw

b (1 + λ−b)
if b 6= 0,

aA
aA + aI

(

aI log λ+ w
)

if b = 0,

(6)

and the first-best action xfb = xfb(σ) solves the first-order condition

∂

∂x
E

[

uI

(

w̃(x)− Φfb

)

+ λuA

(

Φfb

)
∣

∣ σ̃ = σ
]

= 0

for each realization of σ. 320

Proof. The proof is in Appendix A.1. 321

The first-best contract is affine in wealth, like real-world asset management contracts that 322

often constitute a fixed fee and a constant proportion of profits. Further, the contract 323

depends only on the total final wealth w and the welfare weight λ. It does not depend on 324

the public signal ρ. We cannot solve for the action x in closed form in the general model, 325

but in the application to portfolio choice with quadratic utility, we can give a closed-form 326

expression for the portfolio weight x. This is the next corollary. 327

Corollary 1. In the portfolio-choice application with quadratic utility, the first best con-

tract and investment are given by

Φfb = aA +
w − aI − aA

1 + λ
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and 328

xfb =

(

R̄− Rf

)(

aI + aA − Rf

)

σ2 +
(

R̄−Rf

)2
. (7)

Proof. The proof is in Appendix A.2. 329

3.2 Constrained Efficiency 330

We now turn to the constrained-efficient outcome. This is the allocation that maximizes 331

the expectation of the same social welfare function uI + λuA as the first-best outcome, but 332

the asset manager’s action x must be incentive-compatible given the contract Φ. Namely, 333

the action x maximizes the asset manager’s payoff, rather than the social welfare function, 334

given the contract Φ. Thus, we define the constrained-efficient outcome as the solution to 335

the program to 336






























maximize E

[

uI

(

w̃(x)− Φ
)

+ λuA

(

Φ
)

∣

∣

∣

∣

∣

ρ̃ = ρ

]

subject to x ∈ argmax
{

E

[

uA

(

Φ
)

| σ̃ = σ
]}

(8)

over all contracts Φ = Φ(w, x, ρ). The next proposition characterizes the solution to this 337

program. 338

Proposition 2. (Constrained-efficient outcome is first best.) The constrained- 339

efficient outcome coincides with the first-best outcome (as given in Proposition 1 and Corol- 340

lary 1 above). 341

Proof. The proof is in Appendix A.3. 342

This proposition says that if the asset manager is compensated according to first-best con- 343

tract, then the first-best action is incentive compatible. This result follows from the fact 344

that the first-best contract is affine. In theory, the contract should balance two roles: to 345

share risk and align incentives. However, when the contract that implements the first-best 346

risk sharing is affine, it automatically aligns incentives perfectly. 347
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To see why this is the case, you can compare the equations for efficient risk sharing and 348

incentive alignment. The condition for efficient risk sharing is that uI(w − Φ) + λuA(Φ) is 349

maximized for each w, or that the ratio of marginal utilities is 350

u′

I
(w − Φ(w))

u′

A
(Φ(w))

= λ. (9)

Now recall that two Neumann–Morgenstern utility functions induce the same choices—i.e. in-

centives are perfectly aligned—if one is an affine transformation of the other. In our context,

this is the case if there are constants C1 and C2 such that uI(w−Φ(w)) = C1uA(Φ(w))+C2.

Differentiating this condition with respect to wealth says that the ratio of marginal utilities

must be

u′

I
(w − Φ(w))

u′

A
(Φ(w))

=
C1Φ

′(w)

1− Φ′(w)
.

Equating the right-hand sides of the equation above and of equation (9) says that there is 351

efficient risk sharing and incentive alignment only if Φ′ is constant, i.e. Φ is affine. 352

4 Results 353

In this section, we solve the baseline model and prove our main results. We first show that 354

asset managers offer contracts that depend on the public signal, even though contracting 355

on it is not necessary to mitigate the incentive problem between the investor and an asset 356

manager. Next we solve for the equilibrium contract. We do this by reformulating the model 357

in a principal-agent framework and using the method of Lagrange multipliers. Finally, we 358

show that increasing the precision of the public signal decreases welfare. 359

4.1 Competition Is “ρ by ρ ” 360

We now turn to our first main result, that asset managers actively contract on the public 361

signal ρ to compete for investor flows, namely to compete “ρ-by-ρ” and thus break even for 362
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every realization of ρ̃. 363

Proposition 3. The contract Φ = Φ(w, x, ρ) of the employed asset manager depends on

the public signal ρ̃. The asset manager breaks even for each realization ρ, or

E
[

uA

(

Φ
)
∣

∣ ρ̃ = ρ
]

= ū.

Proof. The proof is in Appendix A.4. 364

Asset managers are competitive, so it should not be surprising that they receive their reser- 365

vation utility in equilibrium. The takeaway from Proposition 3 above is that asset managers 366

receive their reservation utility for every realization of ρ̃. In other words, there cannot be an 367

equilibrium in which asset managers break even in expectation over all possible realizations 368

of ρ̃ unless they break even for every realization of ρ̃. To see this, observe that if an asset 369

manager did not break even for every ρ, but only in expectation, then an asset manager 370

who receives less than his reservation utility ū for some realization must receive more than 371

ū for another realization. But since the asset manager is getting strictly more than ū for 372

this realization, there is room for a competing asset manager to profitably undercut him by 373

offering a contract dependent on ρ̃ that allocates more of the surplus to the investor. 374

The argument above glosses over one subtlety: when a competing asset manager offers a 375

contract dependent on ρ̃ to attract the investor, this contract may not only reallocate surplus 376

toward the investor for certain realization of ρ̃, but may also distort the manager’s incentives 377

and therefore change the action x. In the proof, we show that the competing asset manager 378

can offer a “calibrated contract” that indeed undercuts the original asset manager’s contracts 379

while inducing him to choose the same action x. Specifically, if the original asset manager 380

offers Φ, then for ε > 0 the calibrated contract Φε(w) := u−1

A

(

uA

(

Φ(w)
)

− ε
)

induces the 381

same choice of x as Φ but allocates more of the surplus to the investor. 382
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4.2 Equilibrium Contract 383

We now solve for the equilibrium contract by reformulating the model in a principal-agent 384

framework. In this framework, the investor is the principal and the employed asset man- 385

ager is the agent. The investor maximizes his utility over all contracts Φ subject to the 386

asset manager’s incentive constraint and participation constraint. The twist on the classical 387

principal-agent setting is that the asset manager’s participation constraint must bind for 388

each realization ρ of the public signal, since, by Proposition 3, asset managers contract on 389

the public signal to attract flows and thus must break even for each ρ. Thus, the contract 390

of the employed asset manager solves the following principal-agent problem: 391



















































Maximize E

[

uI

(

w̃ − Φ
)
∣

∣ ρ̃ = ρ
]

subject to E

[

uA

(

Φ
)
∣

∣ ρ̃ = ρ
]

= ū and

x ∈ argmax
{

E

[

uA

(

Φ
)
∣

∣ σ̃ = σ
]}

(10)

over all contracts Φ = Φ(w, x, ρ) for each ρ. 392

Next we solve the principal-agent problem in the program (10) for each ρ. We eliminate 393

the asset manager’s participation constraint using the method of Lagrange multipliers, but 394

do not eliminate his incentive constraint. Since the asset manager breaks even for each 395

ρ, the participation constraint depends on ρ and thus so does the Lagrange multiplier on 396

the constraint. We denote this Lagrange multiplier by λρ and re-write the principal-agent 397

problem as follows: 398























maximize E

[

uI

(

w̃ − Φ
)

+ λρuA

(

Φ
)

∣

∣

∣
ρ̃ = ρ

]

subject to x ∈ argmax
{

E

[

uA

(

Φ
)

∣

∣

∣
σ̃ = σ

]}

(11)
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over all contracts Φ = Φ(w, x, ρ), where the Lagrange multiplier λρ makes the asset manager’s 399

participation constraint bind, i.e. 400

E

[

uA

(

Φ
)

| ρ̃ = ρ
]

= ū (12)

for all ρ. Now observe that the program (11) corresponds exactly to the program (5) above 401

for the constrained-efficient outcome. The Lagrange multiplier λρ on the asset manager’s par- 402

ticipation constraint corresponds to the welfare weight λ in the program for the constrained- 403

efficient outcome. The twist is that the Lagrange multiplier depends on ρ, because the asset 404

manager must break even for each ρ. Since we have already solved for the constrained- 405

efficient outcome, we can apply our results above to express the equilibrium contract as a 406

function of the Lagrange multiplier λρ. 407

Proposition 4. (Equilibrium outcome in terms of Lagrange multiplier λρ.)

The equilibrium contract is given by

Φ = Φfb

∣

∣

∣

λ=λρ

=
1

b(1 + λ−b
ρ )

(

aI − λ−b
ρ aA + bw

)

.

The asset manager chooses the first-best action x = xfb. This corresponds to the first- 408

best outcome from Proposition 1 with the social welfare weight λ replaced by the Lagrange 409

multiplier λρ. (Thus, since λρ depends on ρ, the equilibrium contract depends on the ρ, 410

whereas the first-best contract does not.) 411

Proof. The proof is in Appendix A.5. 412

4.3 Coarser Ratings Are Pareto-superior 413

Having established that asset managers offer contracts that depend on the public signal,

we now turn to the question of how this dependence affects welfare. We can focus on the

investor’s payoff alone because asset managers are competitive and so their payoff is always
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equal to their reservation utility ū. Now, for a given ρ, we have

investor’s expected payoff given ρ = E

[

uI

(

w̃(x)− Φρ

)

∣

∣

∣
ρ̃ = ρ

]

.

Notice that we have modified our notation slightly and denoted the equilibrium contract

given ρ by Φρ.
21 Using the law of iterated expectations, we can write the investor’s ex ante

payoff as

E

[

E

[

uI

(

w̃ − Φρ

)

∣

∣

∣
ρ̃ = ρ

]

]

= E

[

uI

(

w̃ − Φρ̃

)

]

.

This expression reveals that, because the contract Φρ̃ depends on the random variable ρ̃, the 414

investor’s payoff is varying with the public signal. In other words, the investor bears the risk 415

over the public signal. Because the investor is risk-averse, this decreases his welfare. Further, 416

increasing the information contained in public signal—making it “finer”—only increases the 417

risk that the investor bears over its outcome.22 Indeed, coarser public signals Pareto dominate 418

finer ones, as we formalize in the next proposition. 419

Proposition 5. (Coarser ratings Pareto-dominate finer ratings.) Consider two 420

public signals ρ̃c and ρ̃f such that ρ̃c is “coarser” than ρ̃f—i.e. sigma(ρ̃c) ⊂ sigma(ρ̃f). The 421

ex ante utility of the investor and all asset managers is at least as high given ρ̃c as given ρ̃f . 422

(Typically the investor is strictly better off.) 423

Proof. The proof is in Appendix A.6. In Appendix A.7 we provide a more direct alternative 424

proof for the application to portfolio choice with quadratic utility. 425

The mechanism behind this result hinges on Proposition 3. Because competition makes asset 426

managers break even “ρ by ρ,” there is one participation constraint for each ρ. Hence, with a 427

finer structure there are more possible realizations of ρ̃, which correspond to more constraints 428

21Notice also that we have omitted the incentive constraint. This is without loss of generality since the
asset manager takes the first-best action under the equilibrium contract (by Proposition 4).

22E.g. credit ratings have been made finer in reality. For example, in 1982 Moody’s added numerical
modifiers to its ratings, thereby refining its ratings partition. See Kliger and Sarig (2000) for analysis of this
event. (Thanks to Joel Shapiro for drawing our attention to this.)
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on the investor’s objective. Because we know from Proposition 2 that the efficient action is 429

always taken, these constraints only restrict risk sharing between the investor and the asset 430

manager. Hence, a finer structure shuts down risk sharing and reduces welfare. 431

One way to get the intuition for this result is to contrast two situations: (i) ρ is complete 432

noise versus (ii) ρ fully reveals σ. In (i), the asset manager’s participation constraint must 433

bind in expectation over σ, whereas in (ii) it must bind for every realization of σ. Given that 434

the investor is risk-averse, optimal risk sharing entails that the asset manager’s utility varies 435

with σ (given that the investor’s utility must vary with σ). Thus, forcing the asset manager 436

to have the same utility for all realizations of σ leads to a sub-optimal outcome—contracting 437

on the public signal is detrimental to risk sharing. 438

This result is closely related to the Hirshleifer (1971) effect, by which information destroys 439

gains from risk sharing. Two differences between our finding and Hirshleifer’s are (i) our 440

result obtains only with competing asset managers, whereas Hirshleifer’s would with a single 441

asset manager and (ii) our result depends only on contracting on public information, even 442

before it is released, whereas Hirshleifer’s relies on trading after public information is released. 443

This distinction also points to the importance of the sequencing of events in our model. 444

Because asset managers offer contracts before the public signal is released, they have the 445

potential to share risk with the investor. However, this is undermined by asset manager’s 446

contracting on the public signal to compete for flows. Further, the more precise the public 447

signal is, the less risk sharing there is in equilibrium. 448

5 Ex Post Public Information and Benchmarking 449

In this section, we modify the model to apply it to portfolio benchmarking. We assume that 450

the public signal ρ̃ is realized later, after the investor has employed an asset manager. Hence, 451

ρ̃ can now represent a benchmark index, realized at the same time as portfolio returns. In 452

this setup, the investor cannot make his choice of asset manager contingent on ρ̃ directly. 453
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However, we find that if the investor observes the realization of a signal s̃ correlated with ρ̃ 454

before choosing an asset manager, then the main result of the baseline model obtains: asset 455

managers still contract on ρ̃. Just as in the baseline model, contracting on ρ̃ helps asset 456

managers to compete for flows (cf. Proposition 3). 457

5.1 Timing with Ex Post Public Information 458

Formally, the modified timing is as follows: 459

1. Each asset manager offers a contract Φ. 460

2. A private signal s̃ is realized. 461

3. The investor observes s and the profile of contracts and employs an asset manager. 462

4. The employed asset manager observes his private signal σ, which is more informative 463

than s, sigma(s̃) ⊂ sigma(σ̃), and takes an action x. 464

5. The public signal ρ̃ and the final wealth w are realized. Wealth is distributed according 465

to the contract Φ of the employed asset manager: the asset manager gets Φ(w, x, ρ) 466

and the investor gets w − Φ(w, x, ρ). 467

Relative to the baseline timing (Subsection 2.3), the public signal ρ̃ is now released at stage 468

5, not at stage 2, but some information is still released at stage 2, in the form of a private 469

signal s̃, which may be correlated with ρ̃. 470

5.2 Competition Is Benchmark by Benchmark 471

Here, contracting on ρ̃ allows asset managers to compete for flows for different realizations 472

of s̃, just as it helps them to compete for flows for different realizations of ρ̃ in the baseline 473

model. 474
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Proposition 6. Suppose that the investor’s private signal is binary, s̃ ∈ {s0, s1}, and 475

informative about the public signal in the sense that E [ ρ̃ | s0] 6= E [ ρ̃ | s1]. 476

The contract Φ = Φ(w, x, ρ) of the employed asset manager depends on the public signal

ρ. The asset manager breaks even for each realization s of the investor’s private signal, or

E
[

uA

(

Φ
)
∣

∣ s̃ = s
]

= ū

for each s. 477

Proof. The proof is in Appendix A.8. 478

Intuitively, if the employed asset manager is getting more than his reservation utility for 479

some realization of s̃, say ŝ, then a deviant asset manager would like to write a contract 480

contingent on s to undercut him given ŝ. He cannot do this directly, since s is the investor’s 481

private information. But he can do it indirectly, by contracting on ρ̃, since ρ̃ is correlated 482

with s̃. I.e. the deviant asset manager can sweeten the deal for the investor given ŝ by 483

offering a contract that increases the investor’s payoff on average given ŝ. 484

In the context of real-world asset management, ρ represents the realization of a benchmark 485

and s represents information about it. Thus, fees are lower when the signal s suggests a high 486

realization of the aggregate state, or a high value of the benchmark ρ̃. This is broadly 487

consistent with practice; asset managers are typically compensated for their performance in 488

excess of a benchmark. 489

6 Extensions 490

In this section, we consider extensions of our baseline setup. 491
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6.1 Competition among Investors 492

Empirically, it seems that investors in some asset managers, such as mutual funds, may 493

get little rent after fees (Carhart (1997)). To reflect this, we modify our setup to include 494

competition among investors. We model asset managers that are competitive but scarce, 495

so that after asset managers post contracts, investors must search for them in a frictional 496

market, rather than employ them directly. We assume that each asset manager can manage 497

capital for only one investor, so if q investors search, asset managers only invest on behalf 498

of a proportion m(q) of them. m is a decreasing function of q, so that the more investors 499

there are—or the more capital there is to manage—the less surplus each investor gets. This 500

is a reduced-form way to capture decreasing returns to scale in asset management as in 501

Berk and Green (2004). It is attractive in our setting since it allows us to preserve our 502

bilateral contracting environment, whereas optimal contracts are hard to introduce explicitly 503

in a setting like Berk and Green’s in which each asset manager invests on behalf of a large 504

number of investors. (Berk and Green restrict attention to flat fees proportional to assets 505

under management, and do not model information or incentive problems.) 506

Specifically, suppose that, after asset managers offer their contracts, each investor decides 507

whether to search for an asset manager in a competitive market. Investors that search find 508

an asset manager with probability m and get zero with probability 1−m. Investors that do 509

not search get the reservation utility ūI.
23

510

Following the competitive-search literature, we have that asset managers must post con-

tracts to attract investors subject to investors’ entry condition as well as to asset managers’

break-even and incentive constraints.24 Thus, the principal-agent problem in Subsection 4.2

23Observe that although asset managers always get their reservation utility ūA, investors get their reserva-
tion utility only if they do not search. This loss of utility from searching is equivalent to including a search
cost, which is standard in the literature.

24For the solution of a standard competitive search model, see, e.g., the survey by
Rogerson, Shimer, and Wright (2005), page 973. Here, we intend our analysis to be slightly infor-
mal, and we apply this solution somewhat loosely. Notably, we gloss over the fact that the posted contracts
Φ are infinite dimensional, unlike in the standard model.
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is replaced by the following program for each ρ:











































































Maximize E

[

uI

(

w̃ − Φ
)
∣

∣ ρ̃ = ρ
]

subject to E

[

uA

(

Φ
)
∣

∣ ρ̃ = ρ
]

= ū ,

x ∈ argmax
{

E

[

uA

(

Φ
)
∣

∣ σ̃ = σ
]}

, and

m(q)E
[

uI

(

w̃ − Φ
)
∣

∣ ρ̃ = ρ
]

= ūI

over all contracts Φ = Φ(w, x, ρ). The only change from the baseline program is the addition 511

of the last equation, which is investors’ entry condition. 512

Observe that, like in the baseline setup, asset managers’ contracts must depend on ρ̃—the 513

argument in Proposition 3 still applies, so asset managers must break even for each realization 514

of the public signal. However, unlike in the baseline setup, coarsening public signal alone 515

does not affect welfare—everyone gets his reservation utility no matter what. This is because 516

the risk-sharing benefits of coarser public signals are eaten up by search externalities. To see 517

this, suppose that the public signal becomes coarser, so that an investor’s payoff is higher 518

conditional on being matched. This induces more investors to enter, hoping to find matches. 519

This, in turn, decreases the payoff per investor due to decreasing returns to scale. And welfare 520

is lowered back to the original level. This may suggest that, when investor competition and 521

decreasing returns to scale are important, policies aimed to improve risk sharing should also 522

limit the scale of asset management. 523

This framework could also be used to study heterogenous asset managers, e.g. with 524

heterogenous private information or “skill.” Namely, here, unlike in the baseline model, a 525

submarket of unskilled asset managers could still attract investors; they would just operate 526

at a smaller scale. In this setup, our baseline analysis would apply to each submarket of asset 527

managers, suggesting our findings are not driven by our assumption that all asset managers 528
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are identical. 529

6.2 Numerical Example and Discussion of Partially Contracting on 530

ρ̃ 531

Although we intended our analysis to be mainly qualitative, we think it is useful to show 532

that it delivers reasonable quantitive effects. Thus, we do a numerical example and discuss 533

the potential economic magnitude of the inefficiency in Proposition 5. Within this context, 534

we also comment on how relaxing perfect competition among asset managers might affect 535

the equilibrium contract, something we found analytically intractable. 536

Consider the portfolio choice application in which the expected return on the market is 537

R̄ − 1 = 8%, the risk-free rate is Rf − 1 = 0%, and there are two equally likely values for 538

the market volatility, σH = 50% and σL = 20%. These are realistic annual numbers; thus, 539

the investor we have in mind invests with an asset manager for one year before considering 540

switching.25 We set the utility parameters aI = aA = 1.5 and ū = −1. This implies the 541

investor’s coefficient of relative risk aversion is two (recall his wealth is normalized to one) 542

and that asset managers get the certainty equivalent of 1.5 −
√
2, i.e. a small amount of 543

wealth.26 544

Now suppose the public signal is perfectly informative, ρ̃ = σ̃. How much of his total 545

wealth is the investor willing to give up to ban contracting it? To answer this, we use equation 546

(29) to compare the investor’s expected utility given ρ̃ = σ̃ to his expected utility given that 547

25According to the Financial Conduct authority, most investors have never switched funds, suggesting our
estimates based on a one-year horizon are conservative (see FCA (2016), p. 64).

26This all follows from direct computation with quadratic utility. The coefficient of relative risk aversion
is given by

CRRAi = −w
u′′
i

u′
i

=
w

ai − w
,

so ai =
(

1 + CRRA−1

i

)

w. The certainty equivalent solves

ū = ui

(

CEi

)

= −1

2

(

ai − CEi

)2

,

so CEi = ai −
√
−2ū.
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ρ̃ is completely uninformative. We find that the answer is 27 basis points. To get a sense 548

of what this number means within our model, we also compare the costs of contracting on 549

ρ̃ with the costs of a decrease in the expected market return. We find that the investor will 550

tolerate a 15 basis point decrease in the expected market return to prohibit contracting on ρ̃. 551

We think these numbers are reasonable: they suggest that for any given individual investor 552

the effect of forgone risk sharing is non-negligible but unlikely to be salient. However, the 553

effects added up over all the investors in the economy are likely to be important. 554

We also use this setup to discuss one potential concern about our baseline analysis: 555

above, we found that asset management contracts should depend on every realization of ρ̃ 556

(Proposition 3), but in reality these contracts depend on only a subset of public information. 557

For example, whereas contracts are likely to depend on credit ratings and benchmark indices, 558

they are unlikely to depend on equity analysts’ reports. We suggest that this may be because 559

asset managers are not perfectly competitive. As a result, they do not break even for each 560

realization of ρ̃, but rather can share some of the risk with the investor. We capture this 561

market power by assuming that there is an incumbent asset manager and that the investor 562

can switch asset managers at a cost after he has observed the realization of ρ̃. Such switching 563

costs are substantial in reality. Indeed, according to the Financial Conduct Authority, 564

Investors can incur a range of costs if they switch between funds and asset man- 565

agers. The costs include explicit charges, tax and the time and effort it takes 566

to switch between funds. Investors may also be reluctant to switch if it would 567

involve crystallising a loss or cutting short a recommended holding period (FCA 568

(2016), p. 18). 569

Hence, we ask how large the switching costs have to be in order for the investor to stay with 570

the incumbent if the incumbent asset manager offers the optimal non-contingent contract. 571

Specifically, recall that the non-contingent contract is better for the investor in the low- 572

surplus (high-volatility) state, σ̃ = σH , but that the contingent contract is better for the 573

investor in the high-surplus (low-volatility) state, σ̃ = σL; we ask: what proportion of his 574

wealth is the investor willing to give up to switch from the non-contingent contract to the 575
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contingent contract when σ = σL? In our example above, the answer is 7%. This is a large 576

number, which implies that switching costs are unlikely to prevent contingent contracting on 577

information associated with outcomes as disparate as σL = 20% and σH = 50%. However, if 578

we repeat the exercise with σL = 25% and σH = 27.5% we find that a switching cost of 90 579

basis points prevents the investor from switching and thus allows for non-contingent contracts 580

to be offered in equilibrium, even in this extreme case of a perfectly informative public signal 581

ρ̃ = σ̃—adding noise would give a smaller number. Thus, we think it is likely within the 582

range of reasonable switching costs and may explain why asset management contracts do 583

not depend on every single realization of ρ̃ in reality. 584

7 Conclusion 585

We present a model of delegated asset management to understand why asset management 586

contracts frequently depend on public information, such as credit ratings or benchmark 587

indices. We show that asset managers contract on public information to attract investor 588

flows, even when it is not necessary to mitigate incentive problems. Further, contracting 589

on public information decreases welfare by preventing risk sharing. This finding gives some 590

support to the regulatory proposal that contracting on credit ratings should be limited. Our 591

equilibrium contracts share a number of features with real-world asset management contracts 592

and our results are robust to a variety of modeling assumptions. 593
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A Proofs 594

A.1 Proof of Proposition 1 595

We can compute the first-best contract directly by applying the first order approach27 to the

program (5):

∂

∂Φ

(

uI

(

w − Φ
)

+ λuA

(

Φ
)

)

= 0,

or 596

u′

I(w − Φ) = λu′

A(Φ). (13)

By a standard result, assumption (1), that the risk tolerance is affine, implies that28
597

u′

i(w) =















(ai + bw)−1/b if b 6= 0,

−e−w/ai if b = 0.

(14)

Thus, equation (13) becomes 598



































(

aI + b(w − Φ)
)

−1/b

= λ
(

aA + bΦ
)

−1/b

if b 6= 0,

− exp

(

−w − Φ

aI

)

= −λ exp

(

− Φ

aA

)

if b = 0.

(15)

27As is standard, we omit the expectation operator and maximize pointwise—if an outcome maximizes
the objective at each point then it maximizes it on average.

28To derive this, write assumption (1) as

− 1

ai + bw
=

u′′(w)

u′(w)
=
(

log u′(w)
)′

.

If b 6= 0, we can integrate to get −b−1 log(ai + bw) = log u′(w), which implies that u′(w) = (ai + bw)−1/b.
If b = 0, the condition says aiu

′′ = −u′. The solution of this differential equation is u(w) = −e−w/ai. (We
have omitted the constants of integration; this is without loss of generality because affine transformations of
a von Neumann–Morgenstern utility function are equivalent.)
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This implies that 599

Φfb =































aI − λ−baA + bw

b (1 + λ−b)
if b 6= 0,

aA
aA + aI

(

aI log λ+ w
)

if b = 0,

(16)

which is affine in w. 600

A.2 Proof of Corollary 1 601

First, find the first-best contract using the first-order condition in equation (13),

u′

I

(

w − Φ
)

= λ u′

A

(

Φ
)

,

or, for quadratic utility,

w − Φ− aI = λ
(

Φ− aA

)

for all w. Thus the first-best contract is 602

Φfb(w) = aA +
w − aI − aA

1 + λ
= A+Bw, (17)

where 603

A =
λaA − aI

1 + λ
and B =

1

1 + λ
. (18)

Given the first-best contract, we now calculate the first-best investment in the risky

security xfb by computing the maximum of

E

[

uI

(

Rf + x
(

R̃ −Rf

)

− Φfb

(

Rf + x
(

R̃− Rf

)

)

)
∣

∣

∣

∣

∣

σ̃ = σ

]

+ λE

[

uA

(

Φfb

(

Rf + x
(

R̃− Rf

)

)

)
∣

∣

∣

∣

∣

σ̃ = σ

]

,

(19)
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over all x. That is, xfb must maximize the expectation

− 1

2
E

[

(

Rf + x(R̃− Rf )−A− B
(

Rf + x(R̃ −Rf )
)

− aI

)2

+ λ

(

(

A+B
(

Rf + x(R̃ − Rf)
)

− aA

)2
)

∣

∣

∣
σ̃ = σ

]

over all x. Thus the first-order condition says that for optimum xfb

E

[

(1−B)(R̃− Rf )
(

Rf + xfb(R̃− Rf)− A− B
(

Rf + xfb(R̃− Rf )
)

− aI

)

+ λB(R̃− Rf )
(

A+B
(

Rf + xfb(R̃− Rf )
)

− aA

)
∣

∣

∣
σ̃ = σ

]

= 0,

thus

xfb =

(

R̄− Rf

)

E
[

(R̃− Rf)2
∣

∣ σ̃ = σ
]

(

(1− B)(A+ aI)− λB(A− aA)

(1− B)2 +B2λ
− Rf

)

.

Substituting in for A and B from equation (18) in the numerator gives

(1− B)(A+ aI)− λB(A− aA) =
λ (aA + aI)

1 + λ

and substituting in for A and B from equation (18) in the denominator gives

(1−B)2 +B2λ =
λ

1 + λ
.

Therefore

xfb(σ) =

(

R̄−Rf

)(

aI + aA −Rf

)

E
[(

R̃− Rf

)2
∣

∣ σ̃ = σ
]

=

(

R̄−Rf

)(

aI + aA −Rf

)

σ2 +
(

R̄− Rf

)2
.

32



A.3 Proof of Proposition 2 604

To prove that the constrained-efficient outcome is the first-best outcome, we show that if the 605

contract is the first best contract Φfb, then the incentive-compatible action is the first-best 606

action. In other words, we show that 607

x ∈ argmax
{

E

[

uA

(

Φfb

)

∣

∣

∣
σ̃ = σ

]}

(20)

implies 608

x ∈ argmax
{

E

[

uI

(

w̃ − Φfb

)

+ λuA

(

Φfb

)

∣

∣

∣
σ̃ = σ

]}

. (21)

We begin with the asset manager’s incentive problem given the contract Φfb and show

through a series of manipulations that the solution coincides with that of maximizing social

welfare. Incentive compatibility implies the first-order condition

∂

∂x
E

[

uA

(

Φfb

(

w̃(x)
)

)
∣

∣

∣
σ̃ = σ

]

= 0

or

E

[

u′

A

(

Φfb

(

w̃(x)
)

)

Φ′

fb

(

w̃(x)
)

w̃′(x)
∣

∣

∣
σ̃ = σ

]

= 0.

By Proposition 1 Φ′

fb
is a constant, thus we can pass it under the expectation operator.

Further, since the right-hand side above is zero, we can remove Φ′

fb
from the equation entirely

to get

E

[

u′

A

(

Φfb

(

w̃(x)
)

)

w̃′(x)
∣

∣

∣
σ̃ = σ

]

= 0.

Now recall from equation (13) that Φfb satisfies u′

I
(w−Φ) = λu′

A
(Φ). Thus, we can re-write 609

the equation above as 610

E

[

u′

I

(

w̃(x)− Φfb

(

w̃(x)
)

)

w̃′(x)
∣

∣

∣
σ̃ = σ

]

= 0. (22)
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Next, we manipulate this equation to recover the first-order condition for the social optimum 611

in equation (21). To do this, we subtract the following expression from equation (22) 612

E

[

Φ′

fb

(

w̃(x)
)

w̃′(x)
[

u′

I

(

w̃(x)− Φfb

(

w̃(x)
)

)

− λu′

A

(

Φfb

(

w̃(x)
)

)]
∣

∣

∣
σ̃ = σ

]

. (23)

This expression equals zero, since, again by the definition of Φfb from equation (13), u′

I
(w−

Φfb)− λu′

A
(Φfb) = 0. Now, factoring terms, we have

E

[(

w̃′(x)− Φ′

fb

(

w̃(x)
)

w̃′(x)
)

u′

I

(

w̃(x)− Φfb

(

w̃(x)
)

)
∣

∣

∣
σ̃ = σ

]

+

+ λE

[

Φ′

fb

(

w̃(x)
)

w̃′(x)u′

A

(

Φfb

(

w̃(x)
)

)
∣

∣

∣
σ̃ = σ

]

= 0

or

∂

∂x
E

[

uI

(

w̃(x)− Φfb

(

w̃(x)
)

)

+ λuA

(

Φfb

(

w̃(x)
)

)
∣

∣

∣
σ̃ = σ

]

= 0.

This is the first-order condition of the social welfare function for each σ. Since uI, uA, and w̃ 613

are concave, the first order condition implies a global maximum, viz. the incentive compatible 614

x is a social optimum. 615

A.4 Proof of Proposition 3 616

Suppose, in anticipation of a contradiction, an equilibrium in which the employed asset 617

manager offers contract Φ̂ given ρ̂ and receives strictly in excess of his reservation utility, 618

E

[

uA

(

Φ̂
(

w̃
)

)
∣

∣

∣
ρ̃ = ρ̂

]

> ū. (24)

We now show that another asset manager Â has a profitable deviation. In order for a contract

Φ̂ε to be a profitable deviation for Â it must (i) make the investor employ him given ρ̂ and

(ii) give him expected utility greater than his reservation utility ū given ρ̂. The subtlety in

this proof is that Â’s contract determines not only the allocation of surplus, but also his

action x. To circumvent the effect of changing actions on payoffs, we construct Φ̂ε to induce
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the asset manager to choose the same action that he would have chosen under Φ̂, but still

to change the division of surplus. To summarize, Φ̂ε is a profitable deviation if given ρ̂ (i) it

gives the investor higher utility than does Φ̂,

E

[

uI

(

w̃ − Φ̂ε

(

w̃
)

)

∣

∣ ρ̃ = ρ̂
]

> E

[

uI

(

w̃ − Φ̂
(

w̃
)

)

∣

∣ ρ̃ = ρ̂
]

,

(ii) it gives the asset manager utility in excess of ū,

E

[

uA

(

Φ̂ε

(

w̃
)

)
∣

∣

∣
ρ̃ = ρ̂

]

> ū,

and (iii) the set of incentive compatible actions under Φ̂ and Φ̂ε coincide,

argmax
x

{

E

[

uA

(

Φ̂ε

(

w̃
)

)
∣

∣

∣
σ̃ = σ

]}

= argmax
x

{

E

[

uA

(

Φ̂
(

w̃
)

)
∣

∣

∣
σ̃ = σ

]}

.

One example of a contract that satisfies these three conditions is 619

Φ̂ε(w̃) := u−1

A

(

uA

(

Φ̂
(

w̃
)

)

− ε
)

(25)

given ρ̂, so that

uA

(

Φ̂ε

)

= uA

(

Φ̂
)

− ε. (26)

Since u′

I
> 0, a sufficient condition for Φ̂ε to satisfy condition (i) is that

w̃ − Φ̂ε

(

w̃
)

> w̃ − Φ̂
(

w̃
)

,

or, substituting from equation (25),

Φ̂
(

w̃
)

> u−1

A

(

uA

(

Φ̂
(

w̃
)

)

− ε
)

,
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which is satisfied for ε > 0 by the inverse function theorem since u′

A
> 0. 620

Condition (ii) holds for ε > 0 and sufficiently small. This follows from equation (26) and 621

inequality (24) with the continuity of uA. 622

Finally, condition (iii) is immediate from equation (26) since affine transformations of 623

utility do not affect choices. 624

Thus the investor will employ asset manager Â who will receive, given ρ̂, utility greater 625

than the utility that he would have received in the supposed equilibrium (in the supposed 626

equilibrium he was unemployed and he was obtaining ū). Thus Φ̂ε is a profitable deviation 627

for Â and Φ cannot be the contract of an asset manager employed at equilibrium given ρ̂. 628

We have shown that the asset manager’s expected utility given any ρ cannot exceed ū. 629

To conclude the proof, note that his utility can never be strictly less than ū because then 630

his expected utility would be less than his reservation utility. 631

A.5 Proof of Proposition 4 632

This follows directly from the solution of the constrained efficient program in Proposition 2 633

and the expression for the first-best contract Φfb in Proposition 1. 634

A.6 Proof of Proposition 5 635

The main step of the proof below is to show that a contract that is feasible given a fine signal 636

structure is also feasible given a coarse signal structure. This follows directly from the law 637

of iterated expectations. Since coarsening the signal structure expands the set of feasible 638

contracts, it can only increase the investor’s objective (recall that the incentive constraints 639

are not binding, which follows from Proposition 2). Since the asset manager always breaks 640

even, increasing the investor’s profits constitutes a Pareto improvement. 641

Below call Φλρf
and Φλρc

the efficient sharing rules associated with fine and coarse public
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signals respectively. First, the asset manager’s participation constraint given ρ̃f is

E

[

uA

(

Φλρf
(w̃)
)
∣

∣

∣
ρ̃f

]

= ū

from equation (12). Now, since sigma(ρ̃c) ⊂ sigma(ρ̃f), use the law of iterated expectations

and the condition above to observe that

E

[

uA

(

Φλρf
(w̃)
)
∣

∣

∣
ρ̃c

]

= E

[

E

[

uA

(

Φλρf
(w̃)
)
∣

∣

∣
ρ̃f

]
∣

∣

∣
ρ̃c

]

= E

[

ū
∣

∣

∣
ρ̃c

]

= ū.

This says that Φλρf
satisfies the participation constraint given ρ̃c. Since Φλρc

solves the

principal-agent problem given ρc—viz. it maximizes the investor’s utility given the asset

manager’s participation constraint—

E

[

uI

(

w̃ − Φλρc
(w̃)
)
∣

∣

∣
ρ̃c

]

≥ E

[

uI

(

w̃ − Φλρf
(w̃)
)
∣

∣

∣
ρ̃c

]

.

Now we use the inequality above and we apply the law of iterated expectations again to

prove that the investor is better off given the coarser structure, namely

E

[

uI

(

w̃ − Φλρc
(w̃)
)]

= E

[

E

[

uI

(

w̃ − Φλρc
(w̃)
)
∣

∣

∣
ρ̃c

]]

≥ E

[

E

[

uI

(

w̃ − Φλρf
(w̃)
)
∣

∣

∣
ρ̃c

]]

= E

[

uI

(

w̃ − Φλρf
(w̃)
)]

.

Since asset managers always break even and the investor is better off with the coarser struc- 642

ture, ρ̃c Pareto dominates ρ̃f . 643

A.7 Proof of Proposition 5 in the Portfolio Choice Application 644

The proof of Proposition 5 in the portfolio choice example has two main steps. We summarize

these steps briefly before giving the full proof. The first step is to show that the investor’s

37



ex ante expected utility is minus the expectation of a convex function,

ūE
[

λ2

ρ̃

]

= −cE

[

f
(

E [Y | ρ̃ ]
)]

for (appropriately defined) c > 0, f ′′ > 0, and a random variable Y . The second step is

to show that the expectation conditional on the coarse signal second-order stochastically

dominates the expectation conditional on the fine signal,

E [Y | ρ̃c]
SOSD≻ E [Y | ρ̃f ].

Whence utility is greater under the coarse signal because minus a convex function is a concave 645

function, and, à la risk aversion, the expectation of a concave function of a stochastically 646

dominated random variable is greater than the expectation of the function of the dominated 647

random variable. 648

Before we proceed to these main steps, we derive an expression for the Lagrange multiplier 649

λρ and the investor’s ex ante expected utility E [uI]. These are routine calculations, although 650

they are somewhat lengthy. 651

Calculation of λρ expression. We give the following expression for the Lagrange 652

multiplier λρ: 653

(

1 + λρ

)2
=

(

aP + aA −Rf

)2

2 |ū| E

[

σ̃2

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

ρ̃ = ρ

]

. (27)

The expression follows from plugging in the expressions for uA, Φρ, and xfb into the asset
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manager’s participation constraint (12). This gives

2|ū|
(

1 + λρ

)2
= E





(

Rf +

(

R̄− Rf

)(

aI + aA − Rf

)

σ̃2 +
(

R̄ −Rf

)2

(

R̃ −Rf

)

− aI − aA

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ





=
(

aI + aA − Rf

)2
E





(

(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄ −Rf

)2
− 1

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ





=
(

aI + aA − Rf

)2

{

1− 2E

[

(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄ −Rf

)2

∣

∣

∣

∣

∣

ρ̃ = ρ

]

+

+ E





(

(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄−Rf

)2

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ











.

(28)

Applying the law of iterated expectations gives

1− 2|λ̄|
(

1 + λρ

)2

(

aI + aA − Rf

)2

= 2E

[

E

[

(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

σ̃

]
∣

∣

∣

∣

∣

ρ̃ = ρ

]

− E



E





(

(

R̄− Rf

)(

R̃ −Rf

)

σ̃2 +
(

R̄− Rf

)2

)2
∣

∣

∣

∣

∣

∣

σ̃





∣

∣

∣

∣

∣

∣

ρ̃ = ρ





= 2E





(

R̄− Rf

)

E

[

(

R̃− Rf

)

∣

∣

∣
σ̃
]

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

∣

ρ̃ = ρ



+ E







(

R̄− Rf

)2
E

[

(

R̃−Rf

)2
∣

∣

∣
σ̃
]

(

σ̃2 +
(

R̄ −Rf

)2
)2

∣

∣

∣

∣

∣

∣

∣

ρ̃ = ρ






.

Now since

E

[

(

R̃− Rf

)2
∣

∣

∣
σ̃
]

= σ̃2 +
(

R̄− Rf

)2
,

we have

1− 2|λ̄|
(

1 + λρ

)2

(

aI + aA −Rf

)2

=
(

R̄− Rf

)2

{

E

[

2

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

ρ̃ = ρ

]

− E

[

1

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

ρ̃ = ρ

]}

= E

[

(

R̄− Rf

)2

σ̃2 +
(

R̄− Rf

)2

∣

∣

∣

∣

∣

ρ̃ = ρ

]

.
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Finally, solve for (1 + λρ)
2 and cross multiply to recover equation (27). 654

Calculation of E [uI] expression. We show that the investor’s ex ante expected utility

can be expressed in terms of the Lagrange multiplier λρ as follows:

E
[

uI

(

w̃ − Φρ

)
∣

∣ ρ̃ = ρ
]

= ū λ2

ρ.

This follows from the following string of calculations.

E
[

uI

(

w̃ − Φρ

)
∣

∣ ρ̃ = ρ
]

= −1

2
E

[

(

aI − w̃ + Φρ

(

w̃
)

)2
∣

∣

∣

∣

ρ̃ = ρ

]

= −1

2
E





(

aI − w̃ + aA +
w̃ − aI − aA

1 + λρ

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ





= −1

2

(

λρ

1 + λρ

)2

E

[

(

aI + aA − w̃
)2
∣

∣

∣
ρ̃ = ρ

]

= −1

2

(

λρ

1 + λρ

)2

E

[

(

aI + aA −Rf − x
(

R̃− Rf

)

)2
∣

∣

∣

∣

ρ̃ = ρ

]

= −1

2

(

λρ

1 + λρ

)2

E





(

aI + aA −Rf −
(

aI + aA −Rf

)

(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄− Rf

)2

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ





= −
(

aI + aA −Rf

)2

2

(

λρ

1 + λρ

)2

E





(

1−
(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄−Rf

)2

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ



.

Now, from equation (28) above,

E





(

1−
(

R̄− Rf

)(

R̃− Rf

)

σ̃2 +
(

R̄− Rf

)2

)2
∣

∣

∣

∣

∣

∣

ρ̃ = ρ



 = 2|ū|
(

1 + λρ

aI + aA −Rf

)2

,

so, finally, 655

E
[

uI

(

w̃ − Φρ

)
∣

∣ ρ̃ = ρ
]

= ū λ2

ρ. (29)

Main Step 1. Rewrite the investor’s ex ante expected utility from the expression (29)
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above:

ūE
[

λ2

ρ̃

]

= ūE





(
√

(aI + aA −Rf )2

2|ū| E

[

σ̃2

σ̃2 + (R̄−Rf )2

∣

∣

∣

∣

ρ̃

]

− 1

)2




=
ū(aI + aA − Rf)

2

√

2|ū|
E





[
√

E

[

σ̃2

σ̃2 + (R̄− Rf )2

∣

∣

∣

∣

ρ̃

]

− 1

]2




= −cE

[

f
(

E [Y |ρ̃]
)]

where

c :=
√

|ū|/2 (aI + aA − Rf )
2,

f(z) :=
(√

z − 1
)2
,

and

Y :=
σ̃2

σ̃2 +
(

R̄− Rf

)2
.

Note that c > 0 and f ′′(z) = z3/2/2 > 0. 656

Main Step 2. By definition,

E [Y | ρ̃c]
SOSD≻ E [Y | ρ̃f ]

if there exists a random variable ε̃ such that

E [Y | ρ̃f ] = E [Y | ρ̃c] + ε̃

and

E
[

ε̃
∣

∣E [Y | ρ̃c]
]

= 0.
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For ε̃ = E [Y | ρ̃f ]− E [Y | ρ̃c] from the above, the condition is

E

[

E [Y | ρ̃f ]− E [Y | ρ̃c]
∣

∣

∣
E [Y | ρ̃c]

]

= 0

or

E

[

E [Y | ρ̃f ]
∣

∣

∣
E [Y | ρ̃c]

]

= E [Y | ρ̃c].

Given the assumption sigma(ρ̃c) ⊂ sigma(ρ̃f) and since conditioning destroys information—

sigma
(

E [Y | ρ̃c]
)

⊂ sigma(ρ̃c)—apply the law of iterated expectations firstly to add and then

to delete conditioning information to calculate that

E

[

E [Y | ρ̃f ]
∣

∣

∣
E [Y | ρ̃c]

]

= E

[

E

[

E [Y | ρ̃f ]
∣

∣

∣
ρ̃c

]

∣

∣

∣

∣

∣

E [Y | ρ̃c]
]

= E

[

E [Y | ρ̃c]
∣

∣

∣
E [Y | ρ̃c]

]

= E
[

Y
∣

∣ ρ̃c
]

,

as desired. 657

A.8 Proof of Proposition 6 658

The proof is analogous to the proof of Proposition 3, in which we show that the equilibrium 659

contract depends on ρ̃ in the baseline model. 660

Here, suppose, in anticipation of a contradiction, an equilibrium in which the employed 661

asset manager offers contract Φ̂ which does not depend on ρ̃ and suppose he receives greater 662

than his reservation utility for some realization ŝ of the investor’s private signal, i.e. 663

E

[

uA

(

Φ̂
(

w̃
)

)
∣

∣

∣
s̃ = ŝ

]

> ū. (30)

We now show that another asset manager Â has a profitable deviation. As in the proof of 664

Proposition 3 we construct a profitable deviation Φ̂ε for Â such that three conditions are 665
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satisfied: (i) the investor employs Â when s̃ = ŝ, (ii) Â’s expected utility is greater than his 666

reservation utility ū, and (iii) Â chooses the same action x that he would have chosen under 667

Φ̂. Further, suppose that the expectation of ρ̃ given ŝ is above its unconditional expection, 668

E [ ρ̃ | s̃ = ŝ] > E [ ρ̃ ] . (31)

This is without loss of generality given that E [ ρ̃ | s̃ = s0] 6= E [ ρ̃ | s̃ = s1] by the hypothesis 669

in the proposition and the fact that we can always redefine the public signal as minus itself. 670

Now consider the following contract: 671

Φ̂ε(w̃) := u−1

A

(

uA

(

Φ̂
(

w̃
)

)

− ε
(

ρ̃− E [ρ̃]
)

)

, (32)

so that 672

uA

(

Φ̂ε

)

= uA

(

Φ̂
)

− ε
(

ρ̃− E [ρ̃]
)

. (33)

We proceed to show that for ε > 0 sufficiently small, Φ̂ε satisfies the three conditions above. 673

Since u′

I
> 0, a sufficient condition for Φ̂ε to satisfy condition (i) is that

E

[

w̃ − Φ̂ε

(

w̃
)

∣

∣

∣
s̃ = ŝ

]

> E

[

w̃ − Φ̂
(

w̃
)

∣

∣

∣
s̃ = ŝ

]

or, substituting from equation (32),

E

[

Φ̂
(

w̃
)

− u−1

A

(

uA

(

Φ̂(w̃)
)

− ε
(

ρ̃− E [ ρ̃ ]
)

)
∣

∣

∣
s̃ = ŝ

]

> 0,

which is satisfied for ε > 0 by the inverse function theorem since u′

A
> 0 and E [ ρ̃ | s̃ = ŝ] > 674

E [ ρ̃ ].29 675

29To see this, recall that for ε small Euler’s approximation implies that

u−1

A

(

uA

(

Φ̂(w̃)
)

− ε
(

ρ̃− E [ ρ̃ ]
)

)

≈ Φ̂
(

w̃
)

−
(

u−1

A

)′
ε
(

ρ̃− E [ ρ̃ ]
)

.
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Condition (ii) holds for ε > 0 and sufficiently small. This follows from equations (31) 676

and (33) and inequality (30) with the continuity of uA.30 Finally, condition (iii) is immediate 677

from equation (33) since affine transformations of utility do not affect choices. 678

Thus the investor will employ asset manager Â who will receive, given ŝ, utility greater 679

than the utility that he would have received in the supposed equilibrium (in the supposed 680

equilibrium he was unemployed and he was obtaining ū). Thus Φ̂ε is a profitable deviation 681

for Â, and Φ cannot be the contract of an asset manager employed in equilibrium given ŝ. 682

Thus, the employed agent must break even for both realizations of s̃. 683

30It is might be worth pointing out that this depends on our assumption that s̃ has binary realization, so
equation (31) implies that

E [ ρ̃ | s̃ = ŝ] > E [ ρ ] > E [ ρ̃ | s̃ 6= ŝ].

Thus the investor employs Â when s̃ = ŝ but not otherwise.
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B Table of Notations 684

Indices

I index indicating the investor
A index indicating an asset manager

Utility Parameters

ui utility function of player i ∈ { I , A }
ai risk-aversion parameter of player i ∈ { I , A } (see equation (1))
b common utility parameter

Signals/Information Structure

σ asset managers’ private signal
ρ public signal

Contracts, Actions, and Payoffs

Φ contract an asset manager offers the investor
Φfb first-best contract (Subsection 3.1 )
Φ′ ∂Φ/∂w, the derivative of Φ with respect to the first argument
Φρ the contract Φ for a given ρ 31

x asset manager’s action or “portfolio weight”
w final wealth

Application to Portfolio Choice

Rf gross risk-free rate

R̃ gross rate of return on risky asset
R̄ expected gross rate of return on the risky asset

Other Quantities and Notations

λ social planner’s welfare weight on the asset manager (Subsection
3.1)

λρ Lagrange multiplier on the asset manager’s participation con-
straint (Subsection 4.2)

sigma(·) the sigma-algebra generated by a random variable

Notation in Extensions Section 6

s̃ investor’s private signal
q number of investors that enter

m(q) probability that an investor is matched with an asset manager
ūI investors’ outside option

31This notation serves to emphasize that Φ actually depends on ρ, even though Φ = Φ(w, x, ρ) is always
a function of ρ.
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