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Abstract

We present a model in which asset managers design their contracts to attract flows of
investor capital. We find that they make their contracts depend on public information,
e.g. credit ratings or benchmark indices, as a way to attract flows, rather than as a way
to mitigate incentive problems, as has been emphasized in the literature. Unfortunately,
asset managers’ competition for flows triggers a race to the bottom: asset managers
use public information in their contracts even though it is socially inefficient. This

inefficiency arises because contracting on public information prevents risk sharing.
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1 Introduction

Delegated asset managers compete to attract flows of investor capital. This flow-motivation
can create incentive problems between asset managers and investors. However, contracting
can mitigate such incentive problems, for example by making contracts depend on verifi-
able public information such as credit ratings (He and Xiong (2013) and [Parlour and Rajan
(2016)) or benchmark indices (Buffa, Vayanos, and Woolley (2015), [Holmstrom (1982), and
van Binsbergen, Brandt, and Koijen (2008)). But these contracts themselves are written by
asset managers who are competing to attract flows. Does asset managers’ flow-motivation
distort the contracts they offer?

In this paper, we present a model that suggests that the answer to this question is yes.
We find that asset managers make their contracts depend on public information as a way to
compete for flows, rather than as a way to mitigate incentive problems. Indeed, in our model,
asset managers do away with incentive problems by contracting on final wealth alone. But
they still contract on public information, because it allows them to offer lower fees to attract
investors’ capital flows, while still breaking even. Unfortunately, asset managers’ competition
for flows triggers a race to the bottom: asset managers use public information in their
contracts even though it is socially inefficient. This inefficiency arises because contracting
on public information prevents risk sharing.

Model preview. To understand how the incentive to attract flows affects asset manage-
ment contracts, we model asset managers that offer contracts to compete for the capital of a
single investor. The investor wants to delegate his investment to an asset manager because
asset managers have better information about asset returns than he does. However, delega-
tion comes with an incentive problem, because the asset managers have different degrees of
risk aversion from the investor. We make no assumption as to whether asset managers or

the investor is more risk averse; we assume only that they have utility functions in the same

!Papers that show the importance of delegated asset managers’ competition for flows in-
clude Berk and Green (2004), Brown, Harlow, and Starks (1996), |Chevalier and Ellison (1997, 1999),
Dasgupta and Piacentind (2015), and [Dasgupta and Pratl (2006, [2008).



HARA classH

In the model, asset managers design contracts taking into account potential incentive
problems. Thus, we allow their contracts to depend not only on the final wealth and the
asset manager’s action, i.e. the “portfolio allocation,” but also on a public signal. In the
baseline model, we assume that the public signal is released before the investor delegates
his investment to an asset manager, which we argue applies well to contracting on credit
ratings!] But we also analyze the case in which the public information is realized later,
which we argue applies well to contracting on benchmark indices (Section[Bl) j Once the asset
manager has been chosen, he gets his private information and makes an investment decision,
i.e. he allocates the investor’s capital to a portfolio of assets Finally, the investment pays
off and the final wealth is divided according to the asset manager’s contract.

Results preview. We begin our analysis by studying the constrained-efficient outcome,
i.e. the delegation contract and investment decision that maximize social welfare subject to
the constraint that the asset manager’s portfolio choice is incentive compatible. We show
that the first-best outcome can be implemented by an affine contract, i.e. a fixed fee and a
constant proportion of final wealth. This follows from an application of a general result due
to Wilsonl (1984): as long as utility functions are in the same HARA class, an affine contract

both implements efficient risk sharing and aligns incentivesH This benchmark implies that

2See Subsection B.1] for the precise definition of a class of HARA (“hyperbolic absolute risk-aversion”)
utility functions. This includes a relatively wide class of preferences; e.g., if everyone has CARA utility then
our results apply for all risk-aversion parameters.

3 Asset management contracts frequently depend on credit ratings in practice. For example, according
to the Bank for International Settlementd (2003), “it is common, for example, for fixed income investment
mandates to restrict the manager’s investment choices to investment grade credits”; that is to say that they
restrict their portfolios to securities rated BBB— or higher by Standard & Poor’s or Baa3 or higher by
Moody’s. E.g., in its European Corporate Bond Fund prospectus, Threadneedle Investments says, “The
portfolio will not be more than 25% invested in securities rated AAA.... A maximum of 10% of the portfolio
can be invested in below investment grade securities.” |Ashcraft and Schuermann (2008) affirm the impor-
tance of contracting on ratings, saying that “As investment mandates typically involve credit ratings, they
comprise another point where the CRAs play an important role.”

4Asset management contracts also frequently depend on benchmarks in practice; see Ma, Tang, and
Gomez (2016).

5 Actually, we set up a general model that includes delegated portfolio choice as a special case. Since we
are motivated by delegated portfolio management contracts, we restrict attention to this application in the
Introduction for illustrative purposes.

6To be specific, the main theorem in Wilson (1984) is that “If the sharing rule is efficient and linear



the classic trade-off between incentives and risk sharing is fully resolved by contracting
on final wealth alone, so contracting on the public signal is not necessary to mitigate the
incentive conflict between an asset manager and the investor!] Thus, our analysis reflects
the effect of contracting on public information beyond that of aligning incentives, which has
been studied elsewhere (see the literature review below).

We then solve for the equilibrium of our model. Our first main result is that asset
managers do make their contracts contingent on the public signal, even though it does
not mitigate the incentive problem. This is because contracting on the signal allows asset
managers to compete to attract flows, i.e. to be employed to manage the investor’s capital. It
allows them to offer the investor lower fees for “good” signals, undercutting the competition
while still breaking even themselves. To see how this works, suppose there is an equilibrium
in which all asset managers offer contracts that do not depend on the public signal. Because
they are competitive, asset managers must break even in expectation across all realizations of
the public signal. Since their contracts do not depend on the signal, they take losses for “bad”
signals and make offsetting profits for “good” signals. Given these strictly positive profits
for these good signals, there is room to offer a lower fee conditional on a good signal, i.e.
to deviate to a contingent contract and undercut the competition. Extending this argument
implies that asset managers must break even not only in expectation, but also for every
realization of the public signal. They achieve this by writing the public signal into their
contracts. Thus, our model suggests that flow competition, rather than incentive problems,
may be the reason that asset management contracts frequently depend on public information

such credit ratings and benchmark indices.

[or affine] then truthful revelation is a Nash equilibrium.” The efficient sharing rule is affine if and only
if everyone has preferences in the same HARA class. We thus apply this result to an optimal contracting
setting. It is also worth noting that [Ross (1974) finds related results for the principal-agent problem, which
are sometimes grouped under the heading of “The Principle of Similarity.” Related results are also in
Amershi and Stoeckenius (1983), [Pratt and Zeckhauser (1989), and [Wilson (1968).

"Note that this contrasts with the common intuition about principal-agent problems that the agent (the
asset manager here) must bear an inefficiently high fraction of the risk in order to give him a strong incentive
to act in the interest of the principal (the investor here). To understand why this trade-off is absent if and
only if utility functions are in the same HARA class see Subsection below and [Pratt (2000).



Our second main result is that competition among asset managers has a dark side: it
prevents risk sharing and thus lowers welfare. Since asset managers contract on the public
signal to compete, they must break even for each realization of the signal in equilibrium.
In other words, they get the same payoff (of zero) no matter what the realization is. Thus,
all of the risk in the public signal is borne by the investor—there is no risk sharing between
him and his asset manager. This result is related to [Hirshleifer’s (1971) result that if public
information is revealed before markets open, it inhibits risk sharing. We find that if public
information is contractable before asset managers are employed, it inhibits risk sharing.
Thus, unlike in [Hirshleifer (1971), the presence of any contractable public signal inhibits risk
sharing even if it contains no new information. Since contracting on the public signal is not
necessary to align incentives in our model, prohibiting contracting on it is Pareto improving.

Policy. Even though our model is stylized, we think that it provides a relevant perspec-
tive for policy. In the context of the model, regulators can increase welfare by limiting the
extent to which asset managers can contract on credit ratings, a leading example of public
signals used in delegated asset management contracts. This policy is in line with advice
from the Financial Stability Board, which said that “Investment managers and institutional
investors must not mechanistically rely on CRA ratings...[and should limit| the proportion of
a portfolio that is CRA ratings-reliant.” This quote reflects the fact that regulators have al-
ready identified some potential risks of the mechanistic reliance on ratings, such as increased
systemic risk; our analysis reveals another one: the mechanistic reliance on ratings may
inhibit risk sharing. Thus, limiting contractual dependence on ratings may have the added
benefit of preventing the race to the bottom which inhibits financial markets from perform-
ing one of their main functions: allowing investors to share risk. A regulator may implement
this policy directly, by prohibiting asset managers from contracting on ratings, or indirectly,
by encouraging ratings agencies to publicize information in a “soft” way that is difficult to
contract on, e.g., they could release verbal reports rather than announce letter-based ratings.

Our finding that a regulator can improve risk sharing without changing the precision of



ratings highlights the difference between our results and those in Hirshleifer (1971). In his
setting, a regulator must decrease the precision of ratings to improve risk sharing; in our
setting, in contrast, a regulator can limit contracting on ratings to improve risk sharing.
However, if contracting on ratings is possible, then increasing their precision may have neg-
ative effects in our model, in line with Hirshleifer’s findings. In particular, we show that
under the assumption that asset managers do not get new information from ratings, coarser
ratings Pareto dominate more precise ones. This is because a more precise public signal al-
lows asset managers to compete more aggressively—i.e. asset managers break even for more
realizations of the signal-—which makes risk sharing more difﬁcul’cQg

Layout. In the remainder of the Introduction, we discuss our model’s empirical relevance
and the related literature. In Section 2l we present the baseline model. In Section Bl we
present the first-best and constrained efficient benchmarks. In Section [, we solve the baseline
model and analyze welfare. In Section [, we study a modified version of the baseline model
that applies to portfolio benchmarking. In Section [0 we analyze extensions. Section [7is the

Conclusion. The Appendix contains all proofs and a table of notations.

1.1 Applications, Realism, Magnitudes, and Limitations

Applications. In addition to our motivating examples of asset managers contracting on
credit ratingsand benchmark indices, our analysis applies broadly to settings in which agents
post contracts to compete for flows. Notably, life insurers, who hold upwards of fifteen per-
cent of outstanding corporate and foreign bonds in the US, are another type of asset manager
that makes contracts contingent on public information. The bulk of insurers’ liabilities are

annuities, many of which give investors the option to take “cash surrender value” before

80f course, there are other reasons that regulators may wish to pursue policies to make ratings more
precise. Indeed, in our setting, if asset managers do get new information from ratings, then increasing
ratings’ precision has the benefit of improved investment efficiency. However, our findings show that, if
ratings are contractable, then this benefit comes with the cost of worse risk sharing. Thus, we suggest that
if regulators work to increase ratings’ precision, it is all the more important that they also work to minimize
the negative effects of increased ratings’ precision on risk sharing, ideally by limiting contractual dependence
on ratings.



maturity (i.e. before the death of the policy holder)H This exposes investors to market risk,
since they get the market value of the annuity, rather than a fixed amount. Our model
suggests a reason for this: if an insurer offered a fixed surrender value, a competing insurer
could offer a cheaper product in good times, attracting flows away from the initial insurer
Thus, insurers’ competition for flows prevents them from sharing market risk with their
investors—it prevents insurers from providing insurance.

Realism of assumptions. Our first main result, that contracts depend on public
signals, follows from our assumption that asset managers offer contracts to compete for
flows. [Wahal and Wang (2011)) find evidence consistent with this assumption. They study
the contracts offered by new entrant mutual funds, who, almost by definition, are competing
to attract new investors. They find that “on the basis of prices over which fund managers
have direct control (management fees), price competition is strong” (p. 42).

In the baseline model, this result also depends the timing, in which asset managers first
post contracts, then the public signal is released, and then the investor chooses an asset
manager (although we consider an alternative timing in Section [5 on portfolio benchmarks).
This timing captures the idea that asset managers must post contracts in anticipation of
changes in public information rather than post new contracts in response to any new infor-
mation. Since public information is released continuously, posting new contracts in response
to it would quickly become very costly (e.g. due to legal fees for contracting) In real-
ity, asset managers avoid these costs by contracting on public information and updating
their contracts relatively rarely; according to [Warner and Wu (2011), “the semi-annual con-

tract change frequency is approximately 5% [for mutual funds|, with contract changes often

9See Berends, McMenamin, Plestis, and Rosen (2013).

10T practice, some annuities’ surrender values are indeed fixed. However, they typically have penalties for
early withdrawal. This effectively adds a cost of switching away from an incumbent asset manager, curbing
competition; we formalize this in Subsection

HThese dynamics, in which asset managers change their contracts in response to changes in public infor-
mation, could be captured by reversing the timing in our model, so asset managers would post contracts
after the public signal was released. With this timing, asset management contracts would still depend on the
signal, in that asset managers would post different contracts for its different realizations. But asset managers
would not need to write the public signal into their contracts explicitly, since each contract would already
correspond to a particular realization of the signal.



shifting the percentage fee up or down by more than a fourth” (p. 273).

Given our first main result, our second main result, that contracting on ratings can
decrease risk sharing, follows from only the assumption that people are risk averse.

Magnitude. Although our baseline setup is abstract, we consider a portfolio choice
application that allows us to map most of the variables in our model to concrete real-world
quantities such as the risk-free rate and the expected return and variance on the market
(Subsection [6.2). This allows us to do a numerical example with “reasonable” numbers in
which we find that an investor would sacrifice 27 basis points of his total wealth to ban
contracting on ratings.

Discussion of results and limitations. Within the context of the numerical example
in Subsection [6.2] we also discuss adding a cost of switching away from an “incumbent” asset
manager. This allows us to address an unrealistic feature of our equilibrium contracts: they
depend on all realizations of the public signal, rather than on a coarse partition of them.
For example, if the public signal is a credit rating, the equilibrium contract in our model
depends on the exact rating, AAA, AA+, AA, etc., rather than just on whether the rating
is investment grade or not, as is typical in practice. Our numerical exercise suggests that
switching costs are unlikely to be large enough to lead an incumbent asset manager to offer
a contract that does not depend on the public signal at all, as in the constrained-efficient
contract, but may lead him to leave out some contingencies, as in real-world contracts.

Our contracting environment includes non-linear contracts that depend on the final
wealth, on the asset manager’s portfolio decisions, and on public information. Despite the
generality of our setup, we find that the equilibrium contract has a simple and realistic form.
It is affine, as are many real-world asset management contracts and it depends on the
public signal. Specifically, asset management fees are lower when the public signal indicates
a high aggregate state. This is realistic if the signal represents a benchmark index: asset

managers are often paid for performance in excess of a benchmark. However, this seems

128ee |Agarwal, Daniel, and Naik (2009) and [Elton, Gruber, and Blake (2003).



less realistic if the signal represents a credit rating: although asset managers are often con-
strained by ratings-based investment mandates (see footnote [3)), their fees do not seem to
depend on ratings. However, we suggest that asset managers’ fees actually do depend on rat-
ings, given the following interpretation. There is a lot of heterogeneity in fund fees (Haslem
(2015), Hortagsu and Syverson (2004)). For example, fund families typically offer different
fees for an investment-grade fund than for a sub-investment-grade fund. Although these are
formally different fees for different funds, they are equivalent to different fees for different
ratings in our model. If the rating is high, the investor invests in the investment-grade fund
and pay its fee; if the rating is low, he invests in the sub-investment-grade fund and pay its
fee.

We have assumed that all asset managers have the same skills and that they are com-
petitive, so the investor gets the rent. However, some evidence suggests that asset managers
have heterogeneous skills and leave little rent to investors (see, e.g, Berk and van Binsbergen
(2015) and (Carhart (1997)). In Subsection 6.1l we discuss how to embed our model in a
directed search environment. We show how this framework would allow us to include dif-
ferent kinds of asset managers and competition among investors. Although this exercise is

somewhat preliminary, it suggests that our results are robust to relaxing these assumptions.

1.2 Related Literature

We make two main contributions to the literature.

First, we show that competition for flows may lead asset managers to contract on public
information even if it is inefficient to do so. In the context of benchmarks, this suggests a
resolution to the puzzle in|Admati and Pfleiderer (1997), who find that benchmarks “cannot
be easily rationalized...[and| are generally inconsistent with optimal risk sharing and do not
lead to the choice of an optimal portfolio” (p. 323). In the context of credit ratings, this
provides an alternative view to|He and Xiong (2013) and [Parlour and Rajan (2016) who also

take the “contracting view” of ratings, but do not study flow competition.



Second, we show that the ability to contract on public information may have adverse
effects. This perspective contrasts with the contracting literature on public information
in principal agent problems in which, absent flow competition, contracts refer to public

information only when it is beneficial. However, it is in line with the findings in some other

strands of the literature. Notably, in [Kurlat and Veldkamp (2015) public information leads

equilibrium prices to adjust, so it is too late for people to trade to share risk. And in|Gloste

1989) private information leads to high bid ask spreads, so it is too costly for people to trade

to share risk. Our contribution relative to these papers is to show that such inefficiencies
arise even when agents write optimal contracts before information is released.

More generally, our work is related to theory papers on contracting in delegated as-
set managemen and on information production by credit rating agencies Unlike these
papers, we focus on flow competition in asset management and abstract entirely from in-

formation production by credit rating agencies (the “rating” in our model is just a public

signal).

2 Baseline Model

In this section, we set up the baseline model. The model constitutes an extensive game of
incomplete information in which asset managers first compete in contracts in the hope of
being employed by a single investor and then the employed asset manager takes an action
on behalf of the investor. Final wealth is divided according to the contract of the employed

asset manager.

13See, e.g., |Chaigneau, Edmans, and Gottlieb  (2014a, [2014b), |Cremer and McLean (1988),
Holmstrom (1979), Kessler, Liilfesmann, and Schmitz (2005), Nalebuff and Scharfstein (1987), and
Riordan and Sappington (1988).

4See, e.g., [Bh harya and Pflei (1985), [Dybvig, Farnsworth, and Carpenter  (2010),
Palomino and Prat (2003

andlS_thghLQﬂ
15Gee, e.g., (lZQlﬂ Bar-Isaac and Shapird (2013), Boot, Milbourn, and
Schmeits (lzoﬂﬂ) [Donaldson and Piacentind (lzmj) Fulghieri, Strobl, and Xia (lzm;«j) Goel and Thakod
(2015), in and Huang (2016), Kashyap and Kovrijnykh (2016), Doherty, Kartasheva, and Phillips
(2019), Kartasheva and Yilm ;) 13), Kovbasyukl (2013), Manso (2014), Mathis, McAndrews, and Rochet
\M), Opp, Opp, and Harris ), Sanglorgl and Spatt (IZQl_d and Skreta and Veldkampl @DQQ




The motivating portfolio-choice application from the Introduction is a special case of our
general model. We describe this special case explicitly in parallel to the general setup. This
makes the model concrete and fixes ideas. It also allows us to provide closed-form solutions

for the asset manager’s action.

2.1 Players

There is a single investor with a unit of wealth and von Neumann—Morgenstern utility u; and
there are at least two competitive asset managers with von Neumann-Morgenstern utility wa
and outside option u. All asset managers are identical. The investor and the asset managers
differ in their risk aversion. We make no assumption as to whether the investor or the asset
manager is more risk averse but we assume that both utility functions are in the same class
of hyperbolic absolute risk-aversion (HARA). Specifically, their absolute risk tolerances are

affine with the same slope,

ui(w)

' (w) = a; + bw (1)

for a; > —bw for all w and for ¢ € {I, A} Note that this assumption imposes no restriction
on the magnitude of the difference between the investor’s and asset manager’s risk aversions.
The HARA class is a relatively large class of utility functions. For example, it contains all
utility functions in the CARA class (exponential utility), which is commonly used in the
literature—if b = 0 condition (Il) implies that the investor and the asset managers have
CARA utility with coeflicients of absolute risk aversion a; ! and a;l. Further, if b = —1

condition () implies that utility functions are quadratic,

wi(w) = —=(a; — w)”. (2)

16This ensures that the coefficients of absolute risk tolerance in condition (Il are always strictly positive
or, equivalently, that the utility functions are always strictly increasing and strictly concave.

10



In the application to portfolio choice that we explore below, we illustrate our results with
quadratic utility, because it allows us to solve for the optimal contract and investment
decisions in closed form.

Asset managers have private information, captured by a private signal o, which is relevant
for the investment decision. There is also a public signal p that the investor can observe as
well. An asset manager’s signal ¢ and the public signal p refer to the realizations of random
variables ¢ and p. We assume that asset managers’ signal is better than the public signal, in
the sense that the sigma-algebra generated by & is finer than the sigma-algebra generated by
p, sigma (p) C sigma (7). In other words, asset managers do not learn from the public signal.
We make this assumption to switch off the public signal’s role in information-provision and
focus on its role in contracting. However, this assumption is not strictly necessary for most

1

of our results or policy prescriptions We do not impose any other restrictions on the

distributions of ¢ and p.

2.2 Actions and Contracts

The investor wishes to delegate his investment to an asset manager because the asset man-
ager is better informed about the optimal action to undertake. The asset manager will take
an action x that affects the distribution of wealth that the investor and asset manager will
divide ex post. Thus, for each action x that the asset manager takes, final wealth is a ran-
dom variable which we denote by w(z). We assume that @ is a concave function of z for
every state of the world The asset manager’s signal provides him with information about

the distribution of this random variable, making delegation valuable. However, the investor

1"We use this assumption only in the proof of Proposition[5] which says that coarser information structures
Pareto dominate finer ones. If we assumed that asset managers learned from the public signal, the forces
behind this result would not be affected, but the result would be attenuated due to a countervailing force:
finer public information might provide asset managers with information that would lead them to make better
investment decisions. However, this force would not affect our policy prescription that ratings-contingent
asset management contracts should be limited. This is because asset managers could still use the information
in ratings to guide their decisions without contracting on it.

18This technical assumption allows us to solve the general model using the first-order approach. Note
that it is not strictly necessary for our main results. In particular, our results hold in the portfolio choice
application in which this assumption does not hold (@ is an affine function of z).

11



anticipates a misalignment of investment incentives since his risk aversion differs from the
asset manager’s. Contracts attempt to align incentives to mitigate this downside of dele-
gating investment. Each asset manager offers a contract ® that specifies his compensation.
This contract may depend on the final wealth w, the public signal p, and his action x, but
not the private signal o because it is not verifiable. In other words, the asset manager gets
®(w, x, p) and the investor gets w — ®(w, z, p).

Portfolio choice application. Our model is motivated by delegated asset management,
in which case = represents an asset manager’s portfolio choice decision. To fix ideas, consider
the problem of allocating the initial unit of wealth between two assets, a risk-free asset with

return Ry and a risky asset with return R. The final wealth is thus given by
w(r) = Ry +x(R — Ry). (3)

In this case, we view asset managers’ private information o as the true standard deviation
of R and p as an imperfect public signal about o.

Below, we use this portfolio choice application with quadratic utility (as in equation
([2)) to provide an illustration of our general results. We make the following assumption to
streamline this illustration: the mean return of the risky asset is known and is independent

of the asset manager’s private information o and the rating p. This implies that

E|R|6=0| =E|R]5=p| =E[R] = R.

With quadratic utility functions, we must restrict parameters to ensure that marginal
utility is positive—i.e. that everyone always prefers more wealth to less. The following

technical condition ensures this is the case in equilibrium:

(R—R;)(R=R) <o (4)

12



for all pairs (o, R).

2.3 Timing
Formally, the timing is as follows:

1. Fach asset manager offers a contract .

2. The public signal p is released.

3. The investor observes p and the profile of contracts and employs an asset manager.
4. The employed asset manager observes his private signal ¢ and takes an action x.

5. The final wealth is realized and it is distributed according to the contract ® of the
employed asset manager: the asset manager gets ®(w, z, p) and the investor gets w —

®(w, z, p).

Remark on timing. It is important for our results that the investor can condition
his decision about which asset manager to employ on the asset managers’ contracts and on
the public signal. This allows asset managers to contract on the public signal as a way to
compete for flows. We model this by assuming that (i) the investor observes the public
signal after asset managers offer contracts and (ii) the investor observes the public signal
before he chooses which asset manager to employ. These assumptions may seem stark, but
we think that they have realistic interpretations: (i) captures the idea that investors are free
to switch asset managers after observing the public signal and (ii) captures the idea that
public information may change, leading investors to reallocate their capital. In other words,
the assumptions that investors employ asset managers only once and that the public signal

is released only once are not crucial to the mechanism.

19To ensure that marginal utility is positive, it must be that the investor’s welath is always less than ag
and the asset managers’ wealth is always less than aa, as can be seen from the quadratic functional form.
Given the equilibrium contract ®, this implies that w— ®(w) < a; and ®(w) < ax for all possible realizations
of w. Condition (@) ensures that these conditions are satisfied given the equilibrium contract ®. Specifically,
we solve the model assuming the conditions are satisfied and then find that they are satisfied as long as this
condition (@) holds.

13



2.4 A Note on Notations

At times the contracting notation can be cumbersome, so we frequently suppress the argu-
ments of some functions. In particular, the contract ® = ®(w, z, p) is always a function of
wealth w, the asset manager’s action z, and the public signal p, but we frequently write just
¢ or ®(w). P' denotes the partial derivative of ® with respect to w, &' := 9®/0w. The
asset manager chooses the action given his signal o, but we usually write just = for (o).

A table summarizing our notations is in Appendix

3 Benchmarks: First Best and Constrained Efficiency

In this section, we solve for the first-best and constrained-efficient outcomes of the model.
The main result of this section is that these outcomes coincide, i.e. the asset manager’s
incentive constraints alone do not move the outcome away from first-best. This result is

useful to solve the model below.

3.1 First Best

We define the first-best outcome as the contract ® and action x that maximize a weighted
sum of utilitie of the investor and a representative asset manager (since all asset managers
are identical, the utility of this “representative asset manager” can also represent the utilities
of all asset managers). We normalize the welfare weight on the investor to one and denote
the welfare weight on the asset manager by A so the social welfare function is u;+ Aua. Thus,

we define the first-best outcome as the solution of the program to

maximize [E[uI (W(x) — @) + Aup (@)} (5)

20We define any outcome on the Pareto frontier as first best for a given welfare weight. In contrast, it
is common in the contract-theory literature to define the first-best outcome as the one that maximizes the
payoff of the principal (the investor) subject to the participation constraint of the agent (the asset manager);
see, e.g., Bolton and Dewatriponti (2005). This is a special case of our definition (choose the welfare weight
A so that the asset manager’s expected utility equals his reservation utility 4). We use the more general
definition because the results we get here are useful below (cf. Proposition [).

14



over all contracts ® = ®(w, z, p) and all actions z = x(o). Note that, since x depends on o
and o is a sufficient statistic for p, information frictions do not constrain this program. The

next proposition characterizes the solution of the program.

PROPOSITION 1. (FIRST BEST.) The first-best contract ®g, is affine and given by

ar — A bap + bw
b

if b0,
By, =

|
—
D
SN~—

aa

@ﬂ%k+w) ifb=0,

[ aa + ag
and the first-best action xn, = xp,(0) solves the first-order condition

€ [ua(() ~ ) + Aua (#0) [ 5 = 0] = 0

for each realization of o.
Proof. The proof is in Appendix [A.T] O

The first-best contract is affine in wealth, like real-world asset management contracts that
often constitute a fixed fee and a constant proportion of profits. Further, the contract
depends only on the total final wealth w and the welfare weight A. It does not depend on
the public signal p. We cannot solve for the action x in closed form in the general model,
but in the application to portfolio choice with quadratic utility, we can give a closed-form

expression for the portfolio weight x. This is the next corollary.

COROLLARY 1. In the portfolio-choice application with quadratic utility, the first best con-

tract and investment are given by

W —ayp — ap

D —
B=0at
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and )
(R — Rf) (CLI +ap — Rf)
0'2 + (R - Rf)2

- (7)

Ty =

Proof. The proof is in Appendix [A.2] O

3.2 Constrained Efficiency

We now turn to the constrained-efficient outcome. This is the allocation that maximizes
the expectation of the same social welfare function u; + Aua as the first-best outcome, but
the asset manager’s action x must be incentive-compatible given the contract ®. Namely,
the action x maximizes the asset manager’s payoff, rather than the social welfare function,

given the contract ®. Thus, we define the constrained-efficient outcome as the solution to

=

subject to x € argmax {[E[uA(Q) |6 = O’}}

the program to
(

maximize [E [uI (0(z) — @) + Aua ()

\

over all contracts ® = ®(w,z, p). The next proposition characterizes the solution to this

program.

PROPOSITION 2. (CONSTRAINED-EFFICIENT OUTCOME IS FIRST BEST.) The constrained-
efficient outcome coincides with the first-best outcome (as given in Propositiond and Corol-

lary (1 above).
Proof. The proof is in Appendix [A.3] O

This proposition says that if the asset manager is compensated according to first-best con-
tract, then the first-best action is incentive compatible. This result follows from the fact
that the first-best contract is affine. In theory, the contract should balance two roles: to
share risk and align incentives. However, when the contract that implements the first-best

risk sharing is affine, it automatically aligns incentives perfectly.
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To see why this is the case, you can compare the equations for efficient risk sharing and
incentive alignment. The condition for efficient risk sharing is that uj(w — ®) + Aua (P) is

maximized for each w, or that the ratio of marginal utilities is

ur(w — ®(w))

RC I ©)

Now recall that two Neumann—Morgenstern utility functions induce the same choices—i.e. in-
centives are perfectly aligned—if one is an affine transformation of the other. In our context,
this is the case if there are constants C and Cy such that ur(w — ®(w)) = Crua(P(w)) + Cs.
Differentiating this condition with respect to wealth says that the ratio of marginal utilities

must be
u(w — ®(w)) G P (w)
uy (P(w)) 1 — @' (w)

Equating the right-hand sides of the equation above and of equation () says that there is

efficient risk sharing and incentive alignment only if ® is constant, i.e. ¢ is affine.

4 Results

In this section, we solve the baseline model and prove our main results. We first show that
asset managers offer contracts that depend on the public signal, even though contracting
on it is not necessary to mitigate the incentive problem between the investor and an asset
manager. Next we solve for the equilibrium contract. We do this by reformulating the model
in a principal-agent framework and using the method of Lagrange multipliers. Finally, we

show that increasing the precision of the public signal decreases welfare.

4.1 Competition Is “p by p”

We now turn to our first main result, that asset managers actively contract on the public

signal p to compete for investor flows, namely to compete “p-by-p” and thus break even for
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every realization of p.

PROPOSITION 3. The contract & = ®(w,x,p) of the employed asset manager depends on

the public signal p. The asset manager breaks even for each realization p, or

[E[uA(CI)) ‘ﬁ:p] = qU.

Proof. The proof is in Appendix [A.4] O

Asset managers are competitive, so it should not be surprising that they receive their reser-
vation utility in equilibrium. The takeaway from Proposition Bl above is that asset managers
receive their reservation utility for every realization of p. In other words, there cannot be an
equilibrium in which asset managers break even in expectation over all possible realizations
of p unless they break even for every realization of p. To see this, observe that if an asset
manager did not break even for every p, but only in expectation, then an asset manager
who receives less than his reservation utility u for some realization must receive more than
u for another realization. But since the asset manager is getting strictly more than @ for
this realization, there is room for a competing asset manager to profitably undercut him by
offering a contract dependent on p that allocates more of the surplus to the investor.

The argument above glosses over one subtlety: when a competing asset manager offers a
contract dependent on p to attract the investor, this contract may not only reallocate surplus
toward the investor for certain realization of p, but may also distort the manager’s incentives
and therefore change the action z. In the proof, we show that the competing asset manager
can offer a “calibrated contract” that indeed undercuts the original asset manager’s contracts
while inducing him to choose the same action x. Specifically, if the original asset manager
offers @, then for ¢ > 0 the calibrated contract ®.(w) := uy' (ua(®(w)) — ¢) induces the

same choice of x as ® but allocates more of the surplus to the investor.
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4.2 Equilibrium Contract

We now solve for the equilibrium contract by reformulating the model in a principal-agent
framework. In this framework, the investor is the principal and the employed asset man-
ager is the agent. The investor maximizes his utility over all contracts ® subject to the
asset manager’s incentive constraint and participation constraint. The twist on the classical
principal-agent setting is that the asset manager’s participation constraint must bind for
each realization p of the public signal, since, by Proposition Bl asset managers contract on
the public signal to attract flows and thus must break even for each p. Thus, the contract

of the employed asset manager solves the following principal-agent problem:

(

Maximize [ [ul (111 — (ID) } p= p]

subject to [E[uA (@) ‘ﬁ = p] = u and (10)

T € argmax{[E[uA(é) ‘6 = O’}}

\

over all contracts ® = ®(w, z, p) for each p.

Next we solve the principal-agent problem in the program (I0) for each p. We eliminate
the asset manager’s participation constraint using the method of Lagrange multipliers, but
do not eliminate his incentive constraint. Since the asset manager breaks even for each
p, the participation constraint depends on p and thus so does the Lagrange multiplier on
the constraint. We denote this Lagrange multiplier by A, and re-write the principal-agent

problem as follows:

maximize [E [ul (111 — CD) + Aua (CD) ‘ p= p]

subject to z € argmax {[E[uA(Q) } o= 0] }
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over all contracts & = ®(w, x, p), where the Lagrange multiplier A, makes the asset manager’s

participation constraint bind, i.e.
Elua(®) |5 =p| = u (12)

for all p. Now observe that the program (III) corresponds exactly to the program ([l above
for the constrained-efficient outcome. The Lagrange multiplier A, on the asset manager’s par-
ticipation constraint corresponds to the welfare weight A in the program for the constrained-
efficient outcome. The twist is that the Lagrange multiplier depends on p, because the asset
manager must break even for each p. Since we have already solved for the constrained-
efficient outcome, we can apply our results above to express the equilibrium contract as a

function of the Lagrange multiplier A,.

PROPOSITION 4. (EQUILIBRIUM OUTCOME IN TERMS OF LAGRANGE MULTIPLIER A,.)

The equilibrium contract is given by

1
b= =——(a = \}° bw ).
fb Ny b(1+)\;b) (CLI p QA T w)

The asset manager chooses the first-best action x = xg,. This corresponds to the first-
best outcome from Proposition [1 with the social welfare weight \ replaced by the Lagrange
multiplier \,. (Thus, since A\, depends on p, the equilibrium contract depends on the p,

whereas the first-best contract does not.)

Proof. The proof is in Appendix O

4.3 Coarser Ratings Are Pareto-superior

Having established that asset managers offer contracts that depend on the public signal,
we now turn to the question of how this dependence affects welfare. We can focus on the

investor’s payoff alone because asset managers are competitive and so their payoff is always
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equal to their reservation utility . Now, for a given p, we have

investor’s expected payoff given p = [E[ul (w(z) — @,)

ﬁzp]-

Notice that we have modified our notation slightly and denoted the equilibrium contract
given p by <I>p Using the law of iterated expectations, we can write the investor’s ex ante

payoff as

E [[E Jur (@ — @)

=] = et

This expression reveals that, because the contract ®; depends on the random variable p, the
investor’s payoff is varying with the public signal. In other words, the investor bears the risk
over the public signal. Because the investor is risk-averse, this decreases his welfare. Further,
increasing the information contained in public signal—making it “finer—only increases the
risk that the investor bears over its outcome Indeed, coarser public signals Pareto dominate

finer ones, as we formalize in the next proposition.

PROPOSITION 5. (COARSER RATINGS PARETO-DOMINATE FINER RATINGS.) Consider two
public signals p. and py such that p. is “coarser” than py—i.e. sigma(p.) C sigma(pys). The
ex ante utility of the investor and all asset managers is at least as high given p. as given py.

(Typically the investor is strictly better off.)

Proof. The proof is in Appendix[A.6l In Appendix we provide a more direct alternative

proof for the application to portfolio choice with quadratic utility. O

The mechanism behind this result hinges on Proposition Bl Because competition makes asset
managers break even “p by p,” there is one participation constraint for each p. Hence, with a

finer structure there are more possible realizations of p, which correspond to more constraints

2INotice also that we have omitted the incentive constraint. This is without loss of generality since the
asset manager takes the first-best action under the equilibrium contract (by Proposition H).

22E.g. credit ratings have been made finer in reality. For example, in 1982 Moody’s added numerical
modifiers to its ratings, thereby refining its ratings partition. See [Kliger and Sarig (2000) for analysis of this
event. (Thanks to Joel Shapiro for drawing our attention to this.)
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on the investor’s objective. Because we know from Proposition 2] that the efficient action is
always taken, these constraints only restrict risk sharing between the investor and the asset
manager. Hence, a finer structure shuts down risk sharing and reduces welfare.

One way to get the intuition for this result is to contrast two situations: (i) p is complete
noise versus (ii) p fully reveals o. In (i), the asset manager’s participation constraint must
bind in expectation over o, whereas in (ii) it must bind for every realization of o. Given that
the investor is risk-averse, optimal risk sharing entails that the asset manager’s utility varies
with o (given that the investor’s utility must vary with o). Thus, forcing the asset manager
to have the same utility for all realizations of ¢ leads to a sub-optimal outcome—contracting
on the public signal is detrimental to risk sharing.

This result is closely related to the Hirshleifer (1971) effect, by which information destroys
gains from risk sharing. Two differences between our finding and Hirshleifer’s are (i) our
result obtains only with competing asset managers, whereas Hirshleifer’s would with a single
asset manager and (ii) our result depends only on contracting on public information, even
before it is released, whereas Hirshleifer’s relies on trading after public information is released.
This distinction also points to the importance of the sequencing of events in our model.
Because asset managers offer contracts before the public signal is released, they have the
potential to share risk with the investor. However, this is undermined by asset manager’s
contracting on the public signal to compete for flows. Further, the more precise the public

signal is, the less risk sharing there is in equilibrium.

5 Ex Post Public Information and Benchmarking

In this section, we modify the model to apply it to portfolio benchmarking. We assume that
the public signal p is realized later, after the investor has employed an asset manager. Hence,
p can now represent a benchmark index, realized at the same time as portfolio returns. In

this setup, the investor cannot make his choice of asset manager contingent on p directly.
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However, we find that if the investor observes the realization of a signal § correlated with p
before choosing an asset manager, then the main result of the baseline model obtains: asset
managers still contract on p. Just as in the baseline model, contracting on p helps asset

managers to compete for flows (cf. Proposition [3)).

5.1 Timing with Ex Post Public Information

Formally, the modified timing is as follows:
1. Fach asset manager offers a contract .
2. A private signal 5 is realized.
3. The investor observes s and the profile of contracts and employs an asset manager.

4. The employed asset manager observes his private signal o, which is more informative

than s, sigma(s) C sigma(d), and takes an action x.

5. The public signal p and the final wealth w are realized. Wealth is distributed according
to the contract ® of the employed asset manager: the asset manager gets ®(w,x, p)

and the investor gets w — ®(w, x, p).

Relative to the baseline timing (Subsection [2.3)), the public signal p is now released at stage
5, not at stage 2, but some information is still released at stage 2, in the form of a private

signal s, which may be correlated with p.

5.2 Competition Is Benchmark by Benchmark

Here, contracting on p allows asset managers to compete for flows for different realizations
of s, just as it helps them to compete for flows for different realizations of p in the baseline

model.
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PROPOSITION 6. Suppose that the investor’s private signal is binary, § € {sg,s1}, and
informative about the public signal in the sense that E[p| so] # E[p]| s1].
The contract ® = ®(w, x, p) of the employed asset manager depends on the public signal

p. The asset manager breaks even for each realization s of the investor’s private signal, or

for each s.
Proof. The proof is in Appendix [A.8] O

Intuitively, if the employed asset manager is getting more than his reservation utility for
some realization of §, say s, then a deviant asset manager would like to write a contract
contingent on s to undercut him given §. He cannot do this directly, since s is the investor’s
private information. But he can do it indirectly, by contracting on p, since p is correlated
with §. Le. the deviant asset manager can sweeten the deal for the investor given § by
offering a contract that increases the investor’s payoff on average given .

In the context of real-world asset management, p represents the realization of a benchmark
and s represents information about it. Thus, fees are lower when the signal s suggests a high
realization of the aggregate state, or a high value of the benchmark p. This is broadly
consistent with practice; asset managers are typically compensated for their performance in

excess of a benchmark.

6 Extensions

In this section, we consider extensions of our baseline setup.
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6.1 Competition among Investors

Empirically, it seems that investors in some asset managers, such as mutual funds, may
get little rent after fees (Carhartl (1997)). To reflect this, we modify our setup to include
competition among investors. We model asset managers that are competitive but scarce,
so that after asset managers post contracts, investors must search for them in a frictional
market, rather than employ them directly. We assume that each asset manager can manage
capital for only one investor, so if ¢ investors search, asset managers only invest on behalf
of a proportion m(q) of them. m is a decreasing function of ¢, so that the more investors
there are—or the more capital there is to manage—the less surplus each investor gets. This
is a reduced-form way to capture decreasing returns to scale in asset management as in
Berk and Green (2004). It is attractive in our setting since it allows us to preserve our
bilateral contracting environment, whereas optimal contracts are hard to introduce explicitly
in a setting like Berk and Green’s in which each asset manager invests on behalf of a large
number of investors. (Berk and Green restrict attention to flat fees proportional to assets
under management, and do not model information or incentive problems.)

Specifically, suppose that, after asset managers offer their contracts, each investor decides
whether to search for an asset manager in a competitive market. Investors that search find
an asset manager with probability m and get zero with probability 1 —m. Investors that do
not search get the reservation utility ;3

Following the competitive-search literature, we have that asset managers must post con-
tracts to attract investors subject to investors’ entry condition as well as to asset managers’

break-even and incentive constraints Thus, the principal-agent problem in Subsection

230bserve that although asset managers always get their reservation utility @, investors get their reserva-
tion utility only if they do not search. This loss of utility from searching is equivalent to including a search
cost, which is standard in the literature.

24For the solution of a standard competitive search model, see, e.g.,, the survey by
Rogerson, Shimer, and Wrightl (2005), page 973. Here, we intend our analysis to be slightly infor-
mal, and we apply this solution somewhat loosely. Notably, we gloss over the fact that the posted contracts
® are infinite dimensional, unlike in the standard model.
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is replaced by the following program for each p:

(

Maximize [E [ul (u? — <I>) ‘ p= p}
subject to [E[uA(é) }pN = p} =u,

x € argmax{[E[uA((I)) }& = a]}, and

\

m(q)[E[ul(u? —9) ‘ﬁ = P] = ur

over all contracts ® = ®(w, x, p). The only change from the baseline program is the addition
of the last equation, which is investors’ entry condition.

Observe that, like in the baseline setup, asset managers’ contracts must depend on p—the
argument in PropositionBlstill applies, so asset managers must break even for each realization
of the public signal. However, unlike in the baseline setup, coarsening public signal alone
does not affect welfare—everyone gets his reservation utility no matter what. This is because
the risk-sharing benefits of coarser public signals are eaten up by search externalities. To see
this, suppose that the public signal becomes coarser, so that an investor’s payoff is higher
conditional on being matched. This induces more investors to enter, hoping to find matches.
This, in turn, decreases the payoff per investor due to decreasing returns to scale. And welfare
is lowered back to the original level. This may suggest that, when investor competition and
decreasing returns to scale are important, policies aimed to improve risk sharing should also
limit the scale of asset management.

This framework could also be used to study heterogenous asset managers, e.g. with
heterogenous private information or “skill.” Namely, here, unlike in the baseline model, a
submarket of unskilled asset managers could still attract investors; they would just operate
at a smaller scale. In this setup, our baseline analysis would apply to each submarket of asset

managers, suggesting our findings are not driven by our assumption that all asset managers
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are identical.

6.2 Numerical Example and Discussion of Partially Contracting on
F;
Although we intended our analysis to be mainly qualitative, we think it is useful to show
that it delivers reasonable quantitive effects. Thus, we do a numerical example and discuss
the potential economic magnitude of the inefficiency in Proposition Bl Within this context,
we also comment on how relaxing perfect competition among asset managers might affect
the equilibrium contract, something we found analytically intractable.
Consider the portfolio choice application in which the expected return on the market is
R — 1 = 8%, the risk-free rate is Ry — 1 = 0%, and there are two equally likely values for
the market volatility, o = 50% and o, = 20%. These are realistic annual numbers; thus,
the investor we have in mind invests with an asset manager for one year before considering
switching We set the utility parameters a; = apx = 1.5 and @ = —1. This implies the
investor’s coefficient of relative risk aversion is two (recall his wealth is normalized to one)
and that asset managers get the certainty equivalent of 1.5 — v/2, i.e. a small amount of
Wealth
Now suppose the public signal is perfectly informative, p = 6. How much of his total
wealth is the investor willing to give up to ban contracting it? To answer this, we use equation

(29) to compare the investor’s expected utility given p = & to his expected utility given that

25 According to the Financial Conduct authority, most investors have never switched funds, suggesting our
estimates based on a one-year horizon are conservative (see [FCAl (2016), p. 64).
26This all follows from direct computation with quadratic utility. The coefficient of relative risk aversion
is given by ,
CRRA; = —w=t = ——,

a; —w

S0 a; = (1 + CRRAi_l)w. The certainty equivalent solves

i = i (CE:) = — (a; — CE:)’,

SO CEl = a; — —21.
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p is completely uninformative. We find that the answer is 27 basis points. To get a sense
of what this number means within our model, we also compare the costs of contracting on
p with the costs of a decrease in the expected market return. We find that the investor will
tolerate a 15 basis point decrease in the expected market return to prohibit contracting on p.
We think these numbers are reasonable: they suggest that for any given individual investor
the effect of forgone risk sharing is non-negligible but unlikely to be salient. However, the
effects added up over all the investors in the economy are likely to be important.

We also use this setup to discuss one potential concern about our baseline analysis:
above, we found that asset management contracts should depend on every realization of p
(Proposition [3]), but in reality these contracts depend on only a subset of public information.
For example, whereas contracts are likely to depend on credit ratings and benchmark indices,
they are unlikely to depend on equity analysts’ reports. We suggest that this may be because
asset managers are not perfectly competitive. As a result, they do not break even for each
realization of p, but rather can share some of the risk with the investor. We capture this
market power by assuming that there is an incumbent asset manager and that the investor
can switch asset managers at a cost after he has observed the realization of p. Such switching

costs are substantial in reality. Indeed, according to the Financial Conduct Authority,

Investors can incur a range of costs if they switch between funds and asset man-
agers. The costs include explicit charges, tax and the time and effort it takes
to switch between funds. Investors may also be reluctant to switch if it would
involve crystallising a loss or cutting short a recommended holding period (FCA
(2016), p. 18).
Hence, we ask how large the switching costs have to be in order for the investor to stay with
the incumbent if the incumbent asset manager offers the optimal non-contingent contract.
Specifically, recall that the non-contingent contract is better for the investor in the low-
surplus (high-volatility) state, & = op, but that the contingent contract is better for the

investor in the high-surplus (low-volatility) state, & = o; we ask: what proportion of his

wealth is the investor willing to give up to switch from the non-contingent contract to the
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contingent contract when o = o7 In our example above, the answer is 7%. This is a large
number, which implies that switching costs are unlikely to prevent contingent contracting on
information associated with outcomes as disparate as o, = 20% and oy = 50%. However, if
we repeat the exercise with o7 = 25% and oy = 27.5% we find that a switching cost of 90
basis points prevents the investor from switching and thus allows for non-contingent contracts
to be offered in equilibrium, even in this extreme case of a perfectly informative public signal
p = o—adding noise would give a smaller number. Thus, we think it is likely within the
range of reasonable switching costs and may explain why asset management contracts do

not depend on every single realization of p in reality.

7 Conclusion

We present a model of delegated asset management to understand why asset management
contracts frequently depend on public information, such as credit ratings or benchmark
indices. We show that asset managers contract on public information to attract investor
flows, even when it is not necessary to mitigate incentive problems. Further, contracting
on public information decreases welfare by preventing risk sharing. This finding gives some
support to the regulatory proposal that contracting on credit ratings should be limited. Our
equilibrium contracts share a number of features with real-world asset management contracts

and our results are robust to a variety of modeling assumptions.
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A Proofs

A.1 Proof of Proposition I

We can compute the first-best contract directly by applying the first order approac to the
program ([B)):

a%(ul(w ~ @) + Aua (@) ) =0,

or

up(w — @) = Ay (D). (13)

By a standard result, assumption (IJ), that the risk tolerance is affine, implies tha

(a; +bw)~1 % if b #£ 0,
ui(w) = (14)

—ew/ai if b=0.

Thus, equation (I3) becomes

(aI +b(w — @))_l/b - A(aA + b<I>> b 2o,

—exp (_w—cl)) = —)lexp (—E) if b=0.
L ar aA

27As is standard, we omit the expectation operator and maximize pointwise—if an outcome maximizes
the objective at each point then it maximizes it on average.
28To derive this, write assumption () as

(15)

1 u”’(w)

Tatbw u'(w)

= (logu'(w))/.

If b # 0, we can integrate to get —b~'log(a; + bw) = logu/(w), which implies that u'(w) = (a; + bw) /.
If b = 0, the condition says a;u” = —u’. The solution of this differential equation is u(w) = —e~%/%. (We
have omitted the constants of integration; this is without loss of generality because affine transformations of
a von Neumann—Morgenstern utility function are equivalent.)

30



This implies that

ar — A bap + bw
ATESS)

if b £ 0,

aa

@ﬂ%A+w) it h=0,
L ap + ag

which is affine in w.

A.2 Proof of Corollary 1

First, find the first-best contract using the first-order condition in equation (I3)),
up(w — @) = Ay (P),

or, for quadratic utility,
w—(I)—alz)\((I)—aA)

for all w. Thus the first-best contract is

W — ap — ap

(W) = aa + T A + bw, (17)
where
Aap — ag 1
A="7T" — d B=——. 1
T+ T+ A (18)

Given the first-best contract, we now calculate the first-best investment in the risky

security g, by computing the maximum of

E

Uy <Rf +z(}~% — Rf) — (I>fb<Rf +$(é - Rf)))

1M<@%Rf+dé—wy») 5:ar

] (19)

+ AL
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over all x. That is, xg, must maximize the expectation

1
— L

. (R +a(R—Ry)— A= B (Ry +2(R— Ry)) —a1>2

+A<(A+B(Rf+x(fz—}zf)) —aA)2> )5=a]

over all . Thus the first-order condition says that for optimum x4,

E|(1— B)(R - Ry) (Rf +an(R—R;)—A—B (Rf + (R — Rf)) - aI)

+AB(R - Ry) (A +B (Rf +am(R - Rf)) - aA)

520] =0,

thus

e (R — Ry) ((1—3)(A+a1)—>\B(A—aA)_R)
" E[(R-Ry)?|5=o0] (I—B)? + B2 r)

Substituting in for A and B from equation (I8) in the numerator gives

A(aa + ap)

(1—B)(A+a1)—>\B(A—aA): 1+>\

and substituting in for A and B from equation (I8) in the denominator gives

1= B+ BA = —
(1-BF+ T+

Therefore

(R — Ry) (a1 + aa — Ry)
E[(R—-Ry)" |6 = 0]
(R — Rf) (aI +ap — Rf)

02+(R—Rf)2 .

(o) =
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A.3 Proof of Proposition

To prove that the constrained-efficient outcome is the first-best outcome, we show that if the
contract is the first best contract ®g,, then the incentive-compatible action is the first-best

action. In other words, we show that

= a} } (20)

implies

anrgmax{[E [ul(zb—(bfb) +)\uA((I>fb) ‘520}}. (21)

We begin with the asset manager’s incentive problem given the contract ®g, and show
through a series of manipulations that the solution coincides with that of maximizing social

welfare. Incentive compatibility implies the first-order condition

%[E |:UA<(I)fb(’U~J(SL’))) ’5 _ U] —0

or

E |l (@n ((2)) ) @, ((2)) i (2)

5:0} —0.

By Proposition [ ®f is a constant, thus we can pass it under the expectation operator.
Further, since the right-hand side above is zero, we can remove ®f, from the equation entirely

to get

E | (@0 (@(2)) ) (2)

Now recall from equation (I3)) that ®g, satisfies uj(w — ®) = A/, (P). Thus, we can re-write

the equation above as

= a} ~0. (22)
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Next, we manipulate this equation to recover the first-order condition for the social optimum

in equation (2I)). To do this, we subtract the following expression from equation (22I)

E [cpgb (i)@' (x) [u; (111(:5) ~ By, (zb(a:))) — (cpfb (111(3:)))] )5 - a] L (23)

This expression equals zero, since, again by the definition of ®g, from equation (I3), uj(w —

Pg,) — Ay (Pg,) = 0. Now, factoring terms, we have

or

%[E [ul (zb(x) — (I)fb(w(x))) + AUA((I)fb (@(m))) ‘5 = ‘7} = 0.

This is the first-order condition of the social welfare function for each . Since ur, ua, and w
are concave, the first order condition implies a global maximum, viz. the incentive compatible

x is a social optimum.

A.4 Proof of Proposition 3

Suppose, in anticipation of a contradiction, an equilibrium in which the employed asset

manager offers contract o given p and receives strictly in excess of his reservation utility,
E fua(®()) |5 =4] > (24)

We now show that another asset manager Ahasa profitable deviation. In order for a contract
®. to be a profitable deviation for A it must (i) make the investor employ him given p and
(ii) give him expected utility greater than his reservation utility @ given p. The subtlety in
this proof is that A’s contract determines not only the allocation of surplus, but also his

action x. To circumvent the effect of changing actions on payoffs, we construct d. to induce
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the asset manager to choose the same action that he would have chosen under ®, but still

A

to change the division of surplus. To summarize, . is a profitable deviation if given p (i) it

A

gives the investor higher utility than does @,

E |un (= 0. () |5 =p| > E [ur(@ - &(@)) | 5= 5],

(ii) it gives the asset manager utility in excess of u,
E fua(®-()) |5 =4] > u.
and (iii) the set of incentive compatible actions under ® and @, coincide,
argm?x {[E [uA<(i>€(zb)) ’ o= a] } = argmfcxx {[E [uA<§>(7IJ)> ’ o= a] } )
One example of a contract that satisfies these three conditions is
b. () = uy! (uA (ci> (w)) - 5) (25)

given p, so that

UA((i)a) = UA((I)) — &. (26)

Since u} > 0, a sufficient condition for . to satisfy condition (i) is that
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which is satisfied for € > 0 by the inverse function theorem since u/y > 0.

Condition (ii) holds for € > 0 and sufficiently small. This follows from equation (26]) and
inequality (24]) with the continuity of uy.

Finally, condition (iii) is immediate from equation (20) since affine transformations of
utility do not affect choices.

Thus the investor will employ asset manager A who will receive, given p, utility greater
than the utility that he would have received in the supposed equilibrium (in the supposed
equilibrium he was unemployed and he was obtaining ). Thus d. is a profitable deviation
for A and ® cannot be the contract of an asset manager employed at equilibrium given p.

We have shown that the asset manager’s expected utility given any p cannot exceed .

To conclude the proof, note that his utility can never be strictly less than @ because then

his expected utility would be less than his reservation utility.

A.5 Proof of Proposition 4

This follows directly from the solution of the constrained efficient program in Proposition

and the expression for the first-best contract ®g, in Proposition [

A.6 Proof of Proposition

The main step of the proof below is to show that a contract that is feasible given a fine signal
structure is also feasible given a coarse signal structure. This follows directly from the law
of iterated expectations. Since coarsening the signal structure expands the set of feasible
contracts, it can only increase the investor’s objective (recall that the incentive constraints
are not binding, which follows from Proposition [2]). Since the asset manager always breaks
even, increasing the investor’s profits constitutes a Pareto improvement.

Below call ® Mo and @, the efficient sharing rules associated with fine and coarse public
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signals respectively. First, the asset manager’s participation constraint given py is

E [uA (@Apf (w))

from equation (I2)). Now, since sigma(p.) C sigma(py), use the law of iterated expectations

and the condition above to observe that

£ o (0,00 | 3] = £ e o (01,0 [3][5] = s

This says that &, o satisfies the participation constraint given p.. Since @), solves the
principal-agent problem given p.—viz. it maximizes the investor’s utility given the asset

manager’s participation constraint—

E [ul (w — @, (w))

|

Now we use the inequality above and we apply the law of iterated expectations again to

pe = E |ur(@ - @y, (@)

prove that the investor is better off given the coarser structure, namely

E|E [u(@ - @, (@) ] 5]]
E [[E [u1<w = (w)) ‘ ch —F [u1<w = (w))] .

E [ul <w — @, (w))}

v

Since asset managers always break even and the investor is better off with the coarser struc-

ture, p. Pareto dominates py. O

A.7 Proof of Proposition [l in the Portfolio Choice Application

The proof of Proposition[5]in the portfolio choice example has two main steps. We summarize

these steps briefly before giving the full proof. The first step is to show that the investor’s
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ex ante expected utility is minus the expectation of a convex function,
aE [\2] = —E [f([E[Y| ﬁ])}

for (appropriately defined) ¢ > 0, f” > 0, and a random variable Y. The second step is
to show that the expectation conditional on the coarse signal second-order stochastically

dominates the expectation conditional on the fine signal,

_ . SOSD ~
E[Y|p] = E[Y]psl.

Whence utility is greater under the coarse signal because minus a convex function is a concave
function, and, a la risk aversion, the expectation of a concave function of a stochastically
dominated random variable is greater than the expectation of the function of the dominated
random variable.

Before we proceed to these main steps, we derive an expression for the Lagrange multiplier
A, and the investor’s ex ante expected utility E [u;]. These are routine calculations, although
they are somewhat lengthy.

Calculation of )\, expression. We give the following expression for the Lagrange

multiplier A,:

ﬁzp] : (27)

The expression follows from plugging in the expressions for ua, ®,, and xg, into the asset

3
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manager’s participation constraint (I2). This gives

2la|(1+A,)° = E

(Rf+ (R_Rf)(al+aA_Rf) (R_Rf) —al—aA>2

-

5%+ (R — Ry)?
_ e (R-R)(R-Ry) .\ |.
Sl e (52+{R—Rf)2f 1> pp} (28)
ey o [R5
(R—R)(R-R)\'|
" ( 52+(fR—Rf)2f> el }

Applying the law of iterated expectations gives

- 21N (14 A,)°
(aI +ap — Rf)2
(R— Ry)(R - Ry)
5+ (R - Ry)”

=2L L

1

ﬁ:p]—[E t

:2['(R_Rf)[[(é_3f))a-] N ]+[E (R—Ry)’E[(R—Ry)*| 5] -
521 (R—R,)° Py (7 + (R— Ry)’) P
Now since
E[(R-Ry)*| 5] =5+ (R~ Ry)"
we have
AN+
(a1+aA—Rf)2
_ 2 2 _ 1 .
SR e AL R P LR
_ (R—Ry)" F=p
52+ (R — Ry)’
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Finally, solve for (14 A,)? and cross multiply to recover equation (27).
Calculation of E [u;] expression. We show that the investor’s ex ante expected utility

can be expressed in terms of the Lagrange multiplier A, as follows:

Ul(w (I)p
1 2
iﬂ':{(aI w-|—(I) )) ﬁ:p}
. 2
W —ap — aa ~
2%“1 Wbt T ) -
1 2| -
:_§<1+ﬂ)\p (a1+aA— w) ‘pzp]
1/ xn \° T 2 | 5
:_5(1+”)\) E <a1+aA—Rf—f(R—Rf)> P:p}
p L
— _ ~ 2
] \ 2 R—R¢)(R—R .
:_§<1+p>\p) ' (al+aA—Rf—(“I+aA_Rf)(52+(]22(—Rf)2f)> o
:_(a1+aA_Rf)2< )‘p )2[ 1_(R—Rf)(é_Rf) 2 ,52,0 .
5 112, 52 + (R — Ry)”

Now, from equation (28]) above,

; <1—(}?‘Rf2(é‘3f))2 p=o| =2l ()

02 + (R — Rf)2

so, finally,
Elu(w—®,)| p=p] =ul (29)

Main Step 1. Rewrite the investor’s ex ante expected utility from the expression (29)
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above:

where
C:= |'ﬂ|/2 (CLI +ap — Rf)2,
f(Z) = (\/E - 1)27
and
~9
Y = ? 5
5%+ (R — Ry)

Note that ¢ > 0 and f”(z) = 23/2/2 > 0.

Main Step 2. By definition,
__ SOSD ~
E[Y|p] = E[Y]py]
if there exists a random variable € such that

E[Y | ) =E[Y] 7] +é

and

E[E|E[Y]a]] =0.
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Foré =E[Y | pf] —E[Y| p.] from the above, the condition is

E[ENY] 7]~ E[Y] 2

E[Y|4d] =0

or

E[EY] 77 |EIY] 2] =E1Y | )

Given the assumption sigma(p.) C sigma(ps) and since conditioning destroys information—
sigma([E Y| ﬁc]) C sigma(p.)—apply the law of iterated expectations firstly to add and then

to delete conditioning information to calculate that

[E[[E[wﬁf])wm]]ﬂE[E[E[Y\ﬁf] o] |EIY] A
= E[E[Y | A |ELY| )
=E[Y|p],

as desired.

A.8 Proof of Proposition

The proof is analogous to the proof of Proposition 8] in which we show that the equilibrium
contract depends on p in the baseline model.

Here, suppose, in anticipation of a contradiction, an equilibrium in which the employed
asset manager offers contract & which does not depend on p and suppose he receives greater

than his reservation utility for some realization § of the investor’s private signal, i.e.
Elua(®()) [5=3] > a (30)

We now show that another asset manager A has a profitable deviation. As in the proof of

Proposition [l we construct a profitable deviation ®. for A such that three conditions are
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satisfied: (i) the investor employs A when § = §, (ii) A’s expected utility is greater than his
reservation utility @, and (iii) A chooses the same action  that he would have chosen under

P. Further, suppose that the expectation of p given § is above its unconditional expection,
Elpls=3>E[p]. (31)

This is without loss of generality given that E[p| § = so] # E[p| § = s1] by the hypothesis
in the proposition and the fact that we can always redefine the public signal as minus itself.

Now consider the following contract:

A

bo(@) 1= uz (ua ((@)) — (5~ E[7])), (32)

so that
up(®.) =ua(®) —=(p—E[7]). (33)

We proceed to show that for € > 0 sufficiently small, &, satisfies the three conditions above.

Since u} > 0, a sufficient condition for ®. to satisfy condition (i) is that

£|

or, substituting from equation (32)),

Y
|
K>
m
—~
£
~—
W
Il
VAN
\Y
[l
S
|
K>
—~
S
~—
W
Il
VAN

E|&(@) — ux' (ua(®(@) — (5~ E[5])) | 5= 3] >0,

which is satisfied for € > 0 by the inverse function theorem since vy > 0 and E[p| § = §] >
£ (5]l

29T0 see this, recall that for € small Euler’s approximation implies that

ux! (ua (@) — (5~ E[5])) = &(a) - (ux") (6~ E[5]).
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Condition (ii) holds for ¢ > 0 and sufficiently small. This follows from equations (3])
and (B3] and inequality (B0) with the continuity of ua [ Finally, condition (iii) is immediate
from equation (B3) since affine transformations of utility do not affect choices.

Thus the investor will employ asset manager A who will receive, given s, utility greater
than the utility that he would have received in the supposed equilibrium (in the supposed
equilibrium he was unemployed and he was obtaining ). Thus d.is a profitable deviation

for A, and ® cannot be the contract of an asset manager employed in equilibrium given 3.

Thus, the employed agent must break even for both realizations of s. O

30Tt is might be worth pointing out that this depends on our assumption that 5 has binary realization, so
equation (BI)) implies that
Elpl s=58]>E[p]>E[p]5# 3]

Thus the investor employs A when § = § but not otherwise.
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B Table of Notations

Indices

index indicating the investor
index indicating an asset manager

Utility Parameters

utility function of player i € {I, A}
risk-aversion parameter of player i € {I, A} (see equation (II))
common utility parameter

Signals/Information Structure

asset managers’ private signal
public signal

Contracts, Actions, and Payoffs

contract an asset manager offers the investor

first-best contract (Subsection B1])

0P /0w, the derivative of ® with respect to the first argument
the contract @ for a given p

asset manager’s action or “portfolio weight”

final wealth

Application to Portfolio Choice

gross risk-free rate
gross rate of return on risky asset
expected gross rate of return on the risky asset

Other Quantities and Notations

sigmay(-)

social planner’s welfare weight on the asset manager (Subsection

B.I)

Lagrange multiplier on the asset manager’s participation con-
straint (Subsection A.2])
the sigma-algebra generated by a random variable

Notation in Extensions Section

2
EISQ Va3

investor’s private signal

number of investors that enter

probability that an investor is matched with an asset manager
investors’ outside option

31This notation serves to emphasize that ® actually depends on p, even though ® = ®(w, z, p) is always

a function of p.
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