

PRECEDENT TERMS

BY BOCCOLA AND HOFFMAN

Giorgia Piacentino
USC & CEPR & ECGI & NBER

MOTIVATION

Some contract terms puzzling because:

- Do not seem to affect prices

- Vary across otherwise similar contracts

- Are negotiated intensely

These terms don't seem to fit into existing categories:

- “Best possible” (priced efficiently)

- Boilerplate (fixed)

THIS PAPER

Define category between “best possible” & boilerplate: precedent terms

Argue why they arise

Bring survey evidence to bear on the category

Argue cannot be explained by existing theories

MODEL À LA HART-MOORE 04

MODEL À LA HART-MOORE 04

Two parties: Seller (S) and Buyer (B)

Think: S is issuer of loan and B is lender

B chooses investment i at cost $\frac{ki^2}{2}$

Outcome is a pair (p_i, τ_i) , p_i is transfer and $\tau_i \in [0, 1]$ a contractual term

Think: p_i is loan price and τ_i is tightness of covenant

Parties bargain over outcomes on list $\mathcal{L} = \{(p_i, \tau_i)\}_i$ but nothing off it

State $s \in \{0, 1\}$; \mathcal{L} cannot depend on s

MODEL: PAYOFFS

Payoffs if trade (net of investment):

$$u_B = i + s\tau - p$$

$$u_S = p - c\tau$$

$\uparrow \tau$ hurts S, benefits B; degree depends on s ; $c < 1$

Payoffs if no trade (net of investment): Both get zero

MODEL: TIMING

$t = 0$: Parties agree on a list of $\mathcal{L} = \{(p_i, \tau_i)\}_i$

$t = 1$: B chooses i

$t = 2$: State s realized; 50-50 Nash bargain over outcomes on list

BENCHMARK: FIRST BEST

BENCHMARK: FIRST BEST

$$i \text{ and } \tau \max \mathbb{E}[u_B + u_S] - \frac{1}{2}ki^2 = \mathbb{E}[(s - c)\tau(s)] + i - \frac{1}{2}ki^2$$

BENCHMARK: FIRST BEST

$$i \text{ and } \tau \max \mathbb{E}[u_B + u_S] - \frac{1}{2}ki^2 = \mathbb{E}[(s - c)\tau(s)] + i - \frac{1}{2}ki^2$$

Term τ : $\tau_{fb} = 0$ if $s = 0$ and $\tau_{fb} = 1$ if $s = 1$: State dependent

BENCHMARK: FIRST BEST

$$i \text{ and } \tau \max \mathbb{E}[u_B + u_S] - \frac{1}{2}ki^2 = \mathbb{E}[(s - c)\tau(s)] + i - \frac{1}{2}ki^2$$

Term τ : $\tau_{fb} = 0$ if $s = 0$ and $\tau_{fb} = 1$ if $s = 1$: State dependent

Investment i : $i_{fb} = \frac{1}{k}$

THREE TYPES OF LISTS

THREE TYPES OF LISTS

Long list: All (p_i, τ_i) on list

“Best possible” terms: Price & terms chosen ex post, after s realized

THREE TYPES OF LISTS

Long list: All (p_i, τ_i) on list

“Best possible” terms: Price & terms chosen ex post, after s realized

Short list: One pair fixed

“Boilerplate” terms: Price & terms fixed ex ante, before s realized

THREE TYPES OF LISTS

Long list: All (p_i, τ_i) on list

“Best possible” terms: Price & terms chosen ex post, after s realized

Short list: One pair fixed

“Boilerplate” terms: Price & terms fixed ex ante, before s realized

Fixed price: Price fixed, all τ_i on list

“Precedent” terms: Price fixed ex ante but terms chosen ex post

“BEST POSSIBLE” TERMS: NOTHING FIXED

“BEST POSSIBLE” TERMS: NOTHING FIXED

$t = 2$: τ efficient; p splits surplus

“BEST POSSIBLE” TERMS: NOTHING FIXED

$t = 2$: τ efficient; p splits surplus

$t = 1$: B chooses i before bargaining

⇒ Underinvestment: B pays full cost to get only $\frac{1}{2}$ surplus

Any investment benefit is partially expropriated by p negotiation

“BEST POSSIBLE” TERMS: NOTHING FIXED

$t = 2$: τ efficient; p splits surplus

$t = 1$: B chooses i before bargaining

⇒ Underinvestment: B pays full cost to get only $\frac{1}{2}$ surplus

Any investment benefit is partially expropriated by p negotiation

$t = 0$: \mathcal{L} long

“BEST POSSIBLE” TERMS: NOTHING FIXED

$t = 2$: τ efficient; p splits surplus

$t = 1$: B chooses i before bargaining

⇒ Underinvestment: B pays full cost to get only $\frac{1}{2}$ surplus

Any investment benefit is partially expropriated by p negotiation

$t = 0$: \mathcal{L} long

⇒ Best possible: Preserve flexibility but sacrifice investment incentives

“BEST POSSIBLE” TERMS: NOTHING FIXED

$t = 2$: τ efficient; p splits surplus

$t = 1$: B chooses i before bargaining

⇒ Underinvestment: B pays full cost to get only $\frac{1}{2}$ surplus

Any investment benefit is partially expropriated by p negotiation

$t = 0$: \mathcal{L} long

⇒ Best possible: Preserve flexibility but sacrifice investment incentives

Solution: Fix everything ex ante: Boilerplate terms!

BOILERPLATE: (p, τ) FIXED

BOILERPLATE: (p, τ) FIXED

$t = 2$: \mathcal{L} is singleton $\implies (p, \tau)$ fixed

BOILERPLATE: (p, τ) FIXED

$t = 2$: \mathcal{L} is singleton $\implies (p, \tau)$ fixed

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

BOILERPLATE: (p, τ) FIXED

$t = 2$: \mathcal{L} is singleton $\implies (p, \tau)$ fixed

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

$t = 0$: τ doesn't depend on s : So inefficient in at least one state

BOILERPLATE: (p, τ) FIXED

$t = 2$: \mathcal{L} is singleton $\Rightarrow (p, \tau)$ fixed

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

$t = 0$: τ doesn't depend on s : So inefficient in at least one state

\Rightarrow Boilerplate: Protects investment incentives but sacrifices flexibility

BOILERPLATE: (p, τ) FIXED

$t = 2$: \mathcal{L} is singleton $\Rightarrow (p, \tau)$ fixed

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

$t = 0$: τ doesn't depend on s : So inefficient in at least one state

\Rightarrow Boilerplate: Protects investment incentives but sacrifices flexibility

Solution: Precedent terms! Fix p ex ante and let τ adjust

PRECEDENT TERMS: FIX p NOT τ

PRECEDENT TERMS: FIX p NOT τ

$t = 2$: Bargain over τ to max $u_B u_S = (i + s\tau - p)(p - c\tau)$ (p fixed!)

$$\text{If } s = 0, \tau = 0 \text{ and if } s = 1, \tau = \frac{(1 + c)p - ci}{2c}$$

τ adjusts imperfectly because price cannot adjust

PRECEDENT TERMS: FIX p NOT τ

$t = 2$: Bargain over τ to max $u_B u_S = (i + s\tau - p)(p - c\tau)$ (p fixed!)

$$\text{If } s = 0, \tau = 0 \text{ and if } s = 1, \tau = \frac{(1 + c)p - ci}{2c}$$

τ adjusts imperfectly because price cannot adjust

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

PRECEDENT TERMS: FIX p NOT τ

$t = 2$: Bargain over τ to max $u_B u_S = (i + s\tau - p)(p - c\tau)$ (p fixed!)

$$\text{If } s = 0, \tau = 0 \text{ and if } s = 1, \tau = \frac{(1 + c)p - ci}{2c}$$

τ adjusts imperfectly because price cannot adjust

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

$t = 0$: Determine p

PRECEDENT TERMS: FIX p NOT τ

$t = 2$: Bargain over τ to max $u_B u_S = (i + s\tau - p)(p - c\tau)$ (p fixed!)

$$\text{If } s = 0, \tau = 0 \text{ and if } s = 1, \tau = \frac{(1 + c)p - ci}{2c}$$

τ adjusts imperfectly because price cannot adjust

$t = 1$: $i = i_{fb}$: Given p fixed, B captures full benefit of i

$t = 0$: Determine p

\implies Precedent: Protect investment incentives & preserve some flexibility

DISTORTIONS AND PREDICTIONS

Best possible distorts ex ante incentives: Underinvestment

Prediction: Arise when value of investment low (k high)

Boilerplate distorts ex post allocation: Doesn't respond to state

Prediction: Arise when value of flexibility low ($\mathbb{P}[s = 1]$ near 0 or 1)

Precedent distort ex post too: Responds imperfectly to state

Prediction: Arise otherwise: Value investment and flexibility

EXPLAINING PAPER W/ HART-MOORE

Shows precedent, boilerplate, best possible terms arise optimally and why

Tradeoff between incentives and flexibility

EXPLAINING PAPER W/ HART-MOORE

Shows precedent, boilerplate, best possible terms arise optimally and why

Tradeoff between incentives and flexibility

Explains why bargaining may persist even in optimal contracts

EXPLAINING PAPER W/ HART-MOORE

Shows precedent, boilerplate, best possible terms arise optimally and why

Tradeoff between incentives and flexibility

Explains why bargaining may persist even in optimal contracts

Explain cross-sectional variation in terms even with fixed price

COMMENTS

COMMENT 1: THEORY

Authors suggest that model inconsistent with theory

But Hart–Moore 04 seems like good start

Question: Model explain facts?

Matters: Explains why precedent arise

They are not about valuation difficulty but about tradeoff

Suggestion: Develop predictions and test them

COMMENT 2: OTHER THEORIES

Authors might reject Hart–Moore but other theories come to mind:

E.g. could signal at initial negotiation anticipating renegotiation

E.g. could have strong tastes for goods with same production cost

E.g. Higbee, Jennejohn, Jones, and Tally 26

Question: Can you rule out these theories?

Matters: Determines what we learn (about)

Suggestion: Consider broader set of theories and try to falsify them

COMMENT 3: FALSIFIABILITY

Authors suggest anything goes

parties cannot form...estimates of...value.... A reader who believes...better...empirical strategies will reveal price sensitivity...will not share this premise. But this is a difference in judgment about markets...

A critic might imagine that the terms we highlight are simply gestating boilerplate.... Whether that domain [of precedent terms] is narrow or wide is a question on which readers can and should differ

Question: Prec. terms unmeasured best possible or approx. boilerplate?

Matters: Set of actual precedent terms could be empty

Suggestion: Take clearer stand with falsifiable statement

CONCLUSIONS

CONCLUSIONS

Super interesting paper on super interesting phenomenon

Relevant for new and existing theory and for empirical work